首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5357篇
  免费   219篇
  国内免费   33篇
化学   3831篇
晶体学   20篇
力学   124篇
数学   871篇
物理学   763篇
  2023年   44篇
  2022年   52篇
  2021年   93篇
  2020年   124篇
  2019年   121篇
  2018年   70篇
  2017年   58篇
  2016年   163篇
  2015年   147篇
  2014年   180篇
  2013年   289篇
  2012年   345篇
  2011年   377篇
  2010年   267篇
  2009年   205篇
  2008年   333篇
  2007年   325篇
  2006年   307篇
  2005年   309篇
  2004年   243篇
  2003年   212篇
  2002年   219篇
  2001年   90篇
  2000年   83篇
  1999年   81篇
  1998年   63篇
  1997年   67篇
  1996年   75篇
  1995年   53篇
  1994年   44篇
  1993年   29篇
  1992年   23篇
  1991年   32篇
  1990年   21篇
  1989年   32篇
  1988年   21篇
  1987年   17篇
  1986年   24篇
  1985年   30篇
  1984年   31篇
  1983年   30篇
  1982年   35篇
  1981年   29篇
  1980年   27篇
  1979年   23篇
  1978年   34篇
  1977年   23篇
  1976年   16篇
  1975年   13篇
  1974年   19篇
排序方式: 共有5609条查询结果,搜索用时 0 毫秒
101.
Acoustical measurements were carried out on railroad coaches, on standard tracks and in the free field during test runs. In particular the influences of noise parameters like train speed, track condition, wheel type or locomotive propulsion were examined. Among other things, it appeared that the track conditions can vary considerably, a fact that has a great influence on all measurement values. One obtains a kind of “track profile” relatively independent of the train speed. Measurements both on the parts of the rail and in the free field during the pass-by of a train wheel, just as do the measurements of the wheel levels at the same time, indicate that the rail in the frequency range between 500 and 1200 Hz is the most important factor with regard to sound radiation. Only above this range is the wheel the essential radiator, mainly in the range around 2000 Hz. Further it could be ascertained that the total acceleration levels of the wheel rim have a greater speed exponent than the total acceleration levels of the rail. This can be important if one makes an extrapolation for high train speeds. Additional damping of coach wheels results in a greater noise reduction not only for the radiated sound but also for the structure-borne sound at the rails. This fact indicates the relatively strong coupling between rail and wheel. Furthermore it was ascertained that the levels generated by a locomotive in the upper frequency range are similar to those produced by damped coach wheels. A propulsion influence of an electrical locomotive on the radiated total sound level could not be ascertained. In the last section possible noise generating mechanisms are pointed out with regard to their importance as indicated by our present state of knowledge.  相似文献   
102.
Optically pumped organic semiconductor lasers are fabricated by evaporation of a thin film of tris(8-hydroxyquinoline) aluminum (Alq(3)) molecularly doped with a laser dye on top of a polyester substrate with an embossed grating structure. We achieve low-threshold, longitudinally monomode distributed-feedback laser operation. By varying the film thickness of the organic semiconductor film, we can tune the wavelength of the surface-emitting laser over 44 nm. The low laser threshold allows the use of a very compact all-solid-state pump laser ( approximately 10 cm long). This concept opens up a way to obtain inexpensive lasers that are tunable over the whole visible range.  相似文献   
103.
Porous particle superstructures of about 15 nm diameter, consisting of ultrasmall nanoparticles of iridium and iridium dioxide, are prepared through the reduction of sodium hexachloridoiridate(+IV) with sodium citrate/sodium borohydride in water. The water-dispersible porous particles contain about 20 wt % poly(N-vinylpyrrolidone) (PVP), which was added for colloidal stabilization. High-resolution transmission electron microscopy confirms the presence of both iridium and iridium dioxide primary particles (1–2 nm) in each porous superstructure. The internal porosity (≈58 vol%) is demonstrated by electron tomography. In situ transmission electron microscopy up to 1000 °C under oxygen, nitrogen, argon/hydrogen (all at 1 bar), and vacuum shows that the porous particles undergo sintering and subsequent compaction upon heating, a process that starts at around 250 °C and is completed at around 800 °C. Finally, well-crystalline iridium dioxide is obtained under all four environments. The catalytic activity of the as-prepared porous superstructures in electrochemical water splitting (oxygen evolution reaction; OER) is reduced considerably upon heating owing to sintering of the pores and loss of internal surface area.  相似文献   
104.
A hydrogen atom transfer-directed electrochemical intramolecular C−H amination has been developed in which the N-radical species are generated at the anode, and the base required for the reaction is generated at the cathode. A broad range of valuable pyrrolidines were prepared in good yields and with high chemoselectivity. The reaction was easily scaled up in both batch and continuous flow systems.  相似文献   
105.
Artificial water channels mimicking natural aquaporins (AQPs) can be used for selective and fast transport of water. Here, we quantify the transport performances of peralkyl-carboxylate-pillar[5]arenes dimers in bilayer membranes. They can transport ≈107 water molecules/channel/second, within one order of magnitude of the transport rates of AQPs, rejecting Na+ and K+ cations. The dimers have a tubular structure, superposing pillar[5]arene pores of 5 Å diameter with twisted carboxy-phenyl pores of 2.8 Å diameter. This biomimetic platform, with variable pore dimensions within the same structure, offers size restriction reminiscent of natural proteins. It allows water molecules to selectively transit and prevents bigger hydrated cations from passing through the 2.8 Å pore. Molecular simulations prove that dimeric or multimeric honeycomb aggregates are stable in the membrane and form water pathways through the bilayer. Over time, a significant shift of the upper vs. lower layer occurs initiating new unexpected water permeation events through toroidal pores.  相似文献   
106.
Evaluating the availability of molecular oxygen (O2) and energy of excited states in the retinal binding site of rhodopsin is a crucial challenging first step to understand photosensitizing reactions in wild-type (WT) and mutant rhodopsins by absorbing visible light. In the present work, energies of the ground and excited states related to 11-cis-retinal and the O2 accessibility to the β-ionone ring are evaluated inside WT and human M207R mutant rhodopsins. Putative O2 pathways within rhodopsins are identified by using molecular dynamics simulations, Voronoi-diagram analysis, and implicit ligand sampling while retinal energetic properties are investigated through density functional theory, and quantum mechanical/molecular mechanical methods. Here, the predictions reveal that an amino acid substitution can lead to enough energy and O2 accessibility in the core hosting retinal of mutant rhodopsins to favor the photosensitized singlet oxygen generation, which can be useful in understanding retinal degeneration mechanisms and in designing blue-lighting-absorbing proteic photosensitizers.  相似文献   
107.
We show that there is no (95, 40, 12, 20) strongly regular graph and, consequently, there is no (96, 45, 24, 18) strongly regular graph, no nontrivial regular two‐graph on 96 vertices, and no partial geometry pg(4, 9, 2). The main idea of the result is based on the star complement technique and requires a moderate amount of computation.  相似文献   
108.
The Ramanujan Journal - In the present note, we prove new lower bounds on large values of character sums $$varDelta (x,q):=max _{chi ne chi _0} big vert sum _{nle x} chi (n)big vert $$...  相似文献   
109.
Herein we report the development of a turn‐on lanthanide luminescent probe for time‐gated detection of nitroreductases (NTRs) in live bacteria. The probe is activated through NTR‐induced formation of the sensitizing carbostyril antenna and resulting energy transfer to the lanthanide center. This novel NTR‐responsive trigger is virtually non‐fluorescent in its inactivated form and features a large signal increase upon activation. We show that the probe is capable of selectively sensing NTR in lysates as well as in live bacteria of the ESKAPE family which are clinically highly relevant multiresistant pathogens responsible for the majority of hospital infections. The results suggest that our probe could be used to develop diagnostic tools for bacterial infections.  相似文献   
110.
Recent crystallographic results revealed conformational changes of zwitterionic ectoine upon hydration. By means of confocal Raman spectroscopy and density functional theory calculations, we present a detailed study of this transformation process as part of a Fermi resonance analysis. The corresponding findings highlight that all resonant couplings are lifted upon exposure to water vapor as a consequence of molecular binding processes. The importance of the involved molecular groups for water binding and conformational changes upon hydration is discussed. Our approach further shows that the underlying rapid process can be reversed by carbon dioxide saturated atmospheres. For the first time, we also confirm that the conformational state of ectoine in aqueous bulk solution coincides with crystalline ectoine in its dihydrate state, thereby highlighting the important role of a few bound water molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号