首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   8篇
  国内免费   1篇
化学   132篇
晶体学   1篇
数学   8篇
物理学   14篇
  2023年   2篇
  2021年   4篇
  2020年   3篇
  2018年   2篇
  2017年   1篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   12篇
  2011年   11篇
  2010年   5篇
  2009年   1篇
  2008年   16篇
  2007年   14篇
  2006年   15篇
  2005年   6篇
  2004年   9篇
  2003年   5篇
  2002年   12篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
91.
Photoexcitation of the electron donor (D) within a linear, covalent donor-acceptor-acceptor molecule (D-A(1)-A(2)) in which A(1) = A(2) results in sub-nanosecond formation of a spin-coherent singlet radical ion pair state, (1)(D(+?)-A(1)(-?)-A(2)), for which the spin-spin exchange interaction is large: 2J = 79 ± 1 mT. Subsequent laser excitation of A(1)(-?) during the lifetime of (1)(D(+?)-A(1)(-?)-A(2)) rapidly produces (1)(D(+?)-A(1)-A(2)(-?)), which abruptly decreases 2J 3600-fold. Subsequent coherent spin evolution mixes (1)(D(+?)-A(1)-A(2)(-?)) with (3)(D(+?)-A(1)-A(2)(-?)), resulting in mixed states which display transient spin-polarized EPR transitions characteristic of a spin-correlated radical ion pair. These photodriven J-jump experiments show that it is possible to use fast laser pulses to transfer electron spin coherence between organic radical ion pairs and observe the results using an essentially background-free time-resolved EPR experiment.  相似文献   
92.
In the present study, siderophore produced by the marine yeast Aureobasidium pullulans was characterized as hydroxamate by chemical and bioassays. The hydroxamate assignment was supported by the appearance of peaks at 1,647.21?C1,625.99?cm?1 and at 1,435.04?cm?1 in the infrared spectrum. The purified siderophore exhibited specific growth-promoting activity under iron-limited conditions for siderophore auxotrophic probiotic bacteria. Cross-utilization of siderophore indicates a symbiotic relationship between the yeast A. pullulans and the selected probiotic bacterial strains. Statistical optimization of medium components for improved siderophore production in A. pullulans was depicted by response surface methodology. The shift in UV?CVis spectroscopy indicates the photoreactive property and subsequent oxidative cleavage of purified siderophore on exposure to sunlight.  相似文献   
93.
Understanding electronic communication among multiple chromophoric and redox units requires construction of well‐defined molecular architectures. Herein, we report the modular synthesis of a shape‐persistent chiral organic square composed of four naphthalene‐1,8:4,5‐bis(dicarboximide) (NDI) sides and four trans‐1,2‐cyclohexanediamine corners. Single crystal X‐ray diffraction reveals some distortion of the cyclohexane chair conformation in the solid state. Analysis of the packing of the molecular squares reveals the formation of highly ordered, one‐dimensional tubular superstructures, held together by means of multiple [C H⋅⋅⋅OC] hydrogen‐bonding interactions. Steady‐state and time‐resolved electronic spectroscopies show strong excited‐state interactions in both the singlet and triplet manifolds. Electron paramagnetic resonance (EPR) and electron‐nuclear double resonance (ENDOR) spectroscopies on the monoreduced state reveal electron sharing between all four NDI subunits comprising the molecular square.  相似文献   
94.
Two donor-acceptor [3]catenanes-composed of a tetracationic molecular square, cyclobis(paraquat-4,4'-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components-have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called "molecular flask" under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV-vis-NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers.  相似文献   
95.
A covalent, fixed-distance donor-bridge-acceptor (D-B-A) molecule was synthesized that upon photoexcitation undergoes ultrafast charge separation to yield a radical ion pair (RP) in which the spin-spin exchange interaction (2J) between the two radicals is sufficiently large to result in preferential RP intersystem crossing to the highest-energy RP eigenstate (T(+1)) at the 350 mT magnetic field characteristic of X-band (9.5 GHz) EPR spectroscopy. This behavior is unprecedented in covalent D-B-A molecules, and is evidenced by the time-resolved EPR (TREPR) spectrum at X-band of (3*)D-B-A derived from RP recombination, which shows all six canonical EPR transitions polarized in emission (e,e,e,e,e,e). In contrast, when the RP is photogenerated in a 3400 mT magnetic field, the TREPR triplet spectrum at W-band (94 GHz) of (3*)D-B-A displays the (a,e,e,a,a,e) polarization pattern characteristic of a weakly coupled RP precursor, similar to that observed in photosynthetic reaction center proteins, and indicates a switch to selective population of the lower-energy T(0) eigenstate.  相似文献   
96.
We have studied spin-dependent charge transfer dynamics in wirelike donor-bridge-acceptor (D-B-A) molecules comprising a phenothiazine (PTZ) donor, an oligo(2,7-fluorene) (FL(n)) bridge, and a perylene-3,4:9,10-bis(dicarboximide) (PDI) acceptor, PTZ-FL(3)-PDI (1) and PTZ-FL(4)-PDI (2), dissolved in the magnetic field-aligned nematic phase of 4-cyano-4'-n-pentylbiphenyl (5CB) at 295 K. Time-resolved EPR spectroscopy using both continuous wave and pulsed microwaves shows that the photogenerated radical pairs (RPs), PTZ(+?)-FL(3)-PDI(-?) and PTZ(+?)-FL(4)-PDI(-?), recombine much faster from the singlet RP manifold than the triplet RP manifold. When a strong resonant microwave π pulse is applied following RP photogeneration in 1 and 2, the RP lifetimes increase about 50-fold as indicated by electron spin-echo detection. This result shows that the RP lifetime can be greatly extended by rapidly switching off fast triplet RP recombination.  相似文献   
97.
We compare the results of small angle neutron scattering on the flux line lattice (FLL) obtained in the borocarbide superconductor LuNi2B2C with the applied field along the c- and a-axes. For H‖c the temperature dependence of the FLL structural phase transition from square to hexagonal symmetry was investigated. Above 10 K the transition onset field. H 2(T), rises sharply, bending away from H c2(T) in contradiction to theoretical predictions of the two merging. For H‖a a first order FLL reorientation transition is observed at H tr=3–3.5 kOe. Below H tr the FLL nearest neighbor direction is parallel to the b-axis, and above H tr to the c-axis. This transition cannot be explained using nonlocal corrections to the London model.  相似文献   
98.
99.
100.
Zinc tetrabenzotetraphenyl porphyrin (ZnTBTPP) covalently attached to four perylenediimide (PDI) acceptors self‐assembles into a π‐stacked, segregated columnar structure, as indicated by small‐ and wide‐angle X‐ray scattering. Photoexcitation of ZnTBTPP rapidly produces a long‐lived electron–hole pair having a 26 Å average separation distance, which is much longer than if the pair is confined within the covalent monomer. This implies that the charges are mobile within their respective segregated ZnTBTPP and PDI charge conduits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号