首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1236篇
  免费   101篇
  国内免费   5篇
化学   1007篇
晶体学   3篇
力学   20篇
数学   127篇
物理学   185篇
  2023年   32篇
  2022年   26篇
  2021年   51篇
  2020年   72篇
  2019年   85篇
  2018年   30篇
  2017年   20篇
  2016年   80篇
  2015年   56篇
  2014年   41篇
  2013年   72篇
  2012年   57篇
  2011年   71篇
  2010年   30篇
  2009年   29篇
  2008年   52篇
  2007年   43篇
  2006年   39篇
  2005年   42篇
  2004年   28篇
  2003年   25篇
  2002年   19篇
  2001年   14篇
  2000年   14篇
  1999年   11篇
  1998年   6篇
  1997年   12篇
  1996年   10篇
  1995年   11篇
  1994年   18篇
  1993年   7篇
  1992年   13篇
  1991年   11篇
  1990年   9篇
  1988年   13篇
  1987年   6篇
  1986年   8篇
  1985年   12篇
  1984年   9篇
  1982年   5篇
  1980年   12篇
  1979年   10篇
  1977年   12篇
  1976年   8篇
  1975年   9篇
  1973年   4篇
  1968年   5篇
  1939年   4篇
  1934年   6篇
  1932年   6篇
排序方式: 共有1342条查询结果,搜索用时 187 毫秒
71.
The additive-free tetrazine/enol ether click reaction was performed in ultra-high vacuum (UHV) with an enol ether group covalently linked to a silicon surface: Dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate molecules were coupled to the enol ether group of a functionalized cyclooctyne which was adsorbed on the silicon (001) surface via the strained triple bond of cyclooctyne. The reaction was observed at a substrate temperature of 380 K by means of X-ray photoelectron spectroscopy (XPS). A moderate energy barrier was deduced for this click reaction in vacuum by means of density functional theory based calculations, in good agreement with the experimental results. This UHV-compatible click reaction thus opens a new, flexible route for synthesizing covalently bound organic architectures.  相似文献   
72.
A new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4′-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability. Transient absorption spectroscopy after excitation into the metal-to-ligand charge transfer absorption band suggests a relaxation cascade originating from hot singlet and triplet MLCT states, leading to the population of the 3MLCT state that exhibits the longest lifetime. Finally, decay into the ground state involves a 3MC state. Attachment of cobaloxime to the iron photosensitizer increases the 3MLCT lifetime at the iron centre. Together with the directing effect of the linker, this potentially makes the dyad more active in photocatalytic proton reduction experiments than the analogous two-component system, consisting of the iron photosensitizer and Co(dmgH)2(py)Cl. This work thus sheds new light on the functionality of base metal dyads, which are important for more efficient and sustainable future proton reduction systems.  相似文献   
73.
Owing to the limited availability of suitable precursors for vapor phase deposition of rare-earth containing thin-film materials, new or improved precursors are sought after. In this study, we explored new precursors for atomic layer deposition (ALD) of cerium (Ce) and ytterbium (Yb) containing thin films. A series of homoleptic tris-guanidinate and tris-amidinate complexes of cerium (Ce) and ytterbium (Yb) were synthesized and thoroughly characterized. The C-substituents on the N-C-N backbone (Me, NMe2, NEt2, where Me=methyl, Et=ethyl) and the N-substituents from symmetrical iso-propyl (iPr) to asymmetrical tertiary-butyl (tBu) and Et were systematically varied to study the influence of the substituents on the physicochemical properties of the resulting compounds. Single crystal structures of [Ce(dpdmg)3] 1 and [Yb(dpdmg)3] 6 (dpdmg=N,N'-diisopropyl-2-dimethylamido-guanidinate) highlight a monomeric nature in the solid-state with a distorted trigonal prismatic geometry. The thermogravimetric analysis shows that the complexes are volatile and emphasize that increasing asymmetry in the complexes lowers their melting points while reducing their thermal stability. Density functional theory (DFT) was used to study the reactivity of amidinates and guanidinates of Ce and Yb complexes towards oxygen (O2) and water (H2O). Signified by the DFT calculations, the guanidinates show an increased reactivity toward water compared to the amidinate complexes. Furthermore, the Ce complexes are more reactive compared to the Yb complexes, indicating even a reactivity towards oxygen potentially exploitable for ALD purposes. As a representative precursor, the highly reactive [Ce(dpdmg)3] 1 was used for proof-of-principle ALD depositions of CeO2 thin films using water as co-reactant. The self-limited ALD growth process could be confirmed at 160 °C with polycrystalline cubic CeO2 films formed on Si(100) substrates. This study confirms that moving towards nitrogen-coordinated rare-earth complexes bearing the guanidinate and amidinate ligands can indeed be very appealing in terms of new precursors for ALD of rare earth based materials.  相似文献   
74.
A series of three Ru(II) polypyridine complexes was investigated for the selective photocatalytic oxidation of NAD(P)H to NAD(P)+ in water. A combination of (time-resolved) spectroscopic studies and photocatalysis experiments revealed that ligand design can be used to control the mechanism of the photooxidation: For prototypical Ru(II) complexes a 1O2 pathway was found. Rudppz ([(tbbpy)2Ru(dppz)]Cl2, tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, dppz=dipyrido[3,2-a:2′,3′-c]phenazine), instead, initiated the cofactor oxidation by electron transfer from NAD(P)H enabled by supramolecular binding between substrate and catalyst. Expulsion of the photoproduct NAD(P)+ from the supramolecular binding site in Rudppz allowed very efficient turnover. Therefore, Rudppz permits repetitive selective assembly and oxidative conversion of reduced naturally occurring nicotinamides by recognizing the redox state of the cofactor under formation of H2O2 as additional product. This photocatalytic process can fuel discontinuous photobiocatalysis.  相似文献   
75.
Various (hetero)arenecarboxylic acids were converted to the corresponding Daugulis amides and nitrated selectively in the ortho‐position in the presence of [CuNO3(PPh3)2] and AgNO2 at 50 °C. A microwave‐assisted saponification allows regenerating the carboxylate group within minutes, which may then be removed tracelessly by protodecarboxylation, or substituted by aryl‐ or alkoxy‐groups via decarboxylative cross‐coupling.  相似文献   
76.
The intramolecular aryl–phenyl scrambling reaction within palladium–DPPP–aryl complex (DPPP=1,3‐bis(diphenylphosphino)propane) ions was analyzed by state‐of‐the‐art tandem MS, including gas‐phase ion/molecule reactions. The Mizoroki–Heck cross‐coupling reaction was performed in the gas phase, and the intrinsic reactivity of important intermediates could be examined. Moreover, linear free‐energy correlations were applied, and a mechanism for the scrambling reaction proceeding via phosphonium cations was assumed.  相似文献   
77.
Methane (CH \(_4\) ) adsorption has been widely studied, mainly in the context of natural gas purification. A much less prominent, but highly relevant application is the preconcentration of CH \(_4\) from ambient air. In this study, we compare six different commercial adsorbent materials with respect to their effectiveness for methane preconcentration: a macroporous polymeric resin (HayeSep D), multi-walled carbon nanotubes, two microporous metal-organic frameworks (HKUST-1 and ZIF-8), and two zeolites (5A and 13X). The most relevant properties, such as isosteric enthalpy of adsorption, specific surface area and the selectivity for CH \(_4\) adsorption over N \(_2\) were characterized by analyzing adsorption/desorption isotherms. Using these parameters, we discuss the tested adsorbents with respect to the most important properties and identify the most promising candidates. Furthermore we identify the experimental conditions that are expected to give the best results with respect to practical applications.  相似文献   
78.
DNA-encoded combinatorial synthesis provides efficient and dense coverage of chemical space around privileged molecular structures. The indole side chain of tryptophan plays a prominent role in key, or “hot spot”, regions of protein–protein interactions. A DNA-encoded combinatorial peptoid library was designed based on the Ugi four-component reaction by employing tryptophan-mimetic indole side chains to probe the surface of target proteins. Several peptoids were synthesized on a chemically stable hexathymidine adapter oligonucleotide “hexT”, encoded by DNA sequences, and substituted by azide-alkyne cycloaddition to yield a library of 8112 molecules. Selection experiments for the tumor-relevant proteins MDM2 and TEAD4 yielded MDM2 binders and a novel class of TEAD-YAP interaction inhibitors that perturbed the expression of a gene under the control of these Hippo pathway effectors.  相似文献   
79.
Single crystals of three new strontium nitridogermanates(IV) were grown in sealed niobium ampules from sodium flux. Dark red Sr4[GeN4] crystallizes in space group P21/c with a = 9.7923(2) Å, b = 6.3990(1) Å, c = 11.6924(3) Å and β = 115.966(1)°. Black Sr8Ge2[GeN4] contains Ge4– anions coexisting with [GeIVN4]8– tetrahedra and adopts space group Cc with a = 10.1117(4) Å, b = 17.1073(7) Å, c = 10.0473(4) Å and β = 115.966(1)°. Black Sr17Ge6N14 features the same anions alongside trigonal planar [GeIVN3]5– units. It crystallizes in P1 with a = 7.5392(1) Å, b = 9.7502(2) Å, c = 11.6761(2) Å, α = 103.308(1)°, β = 94.651(1)° and γ = 110.248(1)°.  相似文献   
80.
Electron-rich tertiary phosphines are valuable species in chemical synthesis. However, their broad application as ligands in catalysis and reagents in stoichiometric reactions is often limited by their costly synthesis. Herein, we report the synthesis and properties of a series of phosphines with 1-alkylpyridin-4-ylidenamino and 1-alkylpyridin-2-ylidenamino substituents that are accessible in a very short and scalable route starting from commercially available aminopyridines and chlorophosphines. The determination of the Tolman electronic parameter (TEP) value reveals that the electron donor ability can be tuned by the substituent pattern at the aminopyridine backbone and it can exceed that of common alkylphosphines and N-heterocyclic carbenes. The potential of the new phosphines as strong nucleophiles in phosphine-mediated transformations is demonstrated by the formation of Lewis base adducts with CO2 and CS2. In addition, the coordination chemistry of the new phosphines towards CuI, AuI, and PdII metal centers has been explored, and a convenient procedure to introduce the most basic phosphine into metal complexes starting from air-stable phosphonium salt is described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号