首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373879篇
  免费   4862篇
  国内免费   1905篇
化学   203178篇
晶体学   5498篇
力学   15591篇
综合类   64篇
数学   44492篇
物理学   111823篇
  2020年   3077篇
  2019年   3365篇
  2018年   4287篇
  2017年   4363篇
  2016年   6586篇
  2015年   4250篇
  2014年   6465篇
  2013年   16136篇
  2012年   12969篇
  2011年   15772篇
  2010年   11119篇
  2009年   10926篇
  2008年   14812篇
  2007年   14830篇
  2006年   14090篇
  2005年   12770篇
  2004年   11582篇
  2003年   10302篇
  2002年   10134篇
  2001年   11004篇
  2000年   8347篇
  1999年   6255篇
  1998年   5284篇
  1997年   5191篇
  1996年   5048篇
  1995年   4525篇
  1994年   4587篇
  1993年   4370篇
  1992年   4854篇
  1991年   4881篇
  1990年   4645篇
  1989年   4506篇
  1988年   4455篇
  1987年   4386篇
  1986年   4253篇
  1985年   5640篇
  1984年   5787篇
  1983年   4947篇
  1982年   5306篇
  1981年   4848篇
  1980年   4653篇
  1979年   4922篇
  1978年   5165篇
  1977年   5131篇
  1976年   5168篇
  1975年   4832篇
  1974年   4923篇
  1973年   5113篇
  1972年   3707篇
  1971年   2977篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
43.
We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.  相似文献   
44.
45.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
46.
Seven new copper(II) complexes of type [Cu(A)(L)]?H2O (A = sparfloxacin, ciprofloxacin, levofloxacin, gatifloxacin, pefloxacin, ofloxacin, norfloxacin; L = 5‐[(3‐chlorophenyl)diazenyl]‐4‐hydroxy‐1,3‐thiazole‐2(3H)‐thione) were synthesized and characterized using elemental and thermogravimetric analyses, and electronic, electron paramagnetic resonance (EPR), Fourier transform infrared and liquid chromatography–mass spectroscopies. Tetrahedral geometry around copper is assigned in all complexes using EPR and electronic spectral analyses. All complexes were investigated for their interaction with herring sperm DNA utilizing absorption titration (Kb = 1.27–3.13 × 105 M?1) and hydrodynamic volume measurement studies. The studies suggest the classical intercalative mode of DNA binding. The cleavage reaction on pUC19 DNA was monitored by agarose gel electrophoresis. The results indicate that the Cu(II) complexes can more effectively promote the cleavage of plasmid DNA. The superoxide dismutase mimic activity of the complexes was evaluated by nitroblue tetrazolium assay, and the complexes catalysed the dismutation of superoxide at pH = 7.8 with IC50 values in the range 0.597–0.900 μM. The complexes were screened for their in vitro antibacterial activity against five pathogenic bacteria. All the complexes are good cytotoxic agents and show LC50 values ranging from 5.559 to 11.912 µg ml?1. All newly synthesized Cu(II) complexes were also evaluated for their in vitro antimalarial activity against Plasmodium falciparum strain (IC50 = 0.62–2.0 µg ml?1). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
47.
48.
49.
50.
Enantiopure β‐amino acids represent interesting scaffolds for peptidomimetics, foldamers and bioactive compounds. However, the synthesis of highly substituted analogues is still a major challenge. Herein, we describe the spontaneous rearrangement of 4‐carboxy‐2‐oxoazepane α,α‐amino acids to lead to 2′‐oxopiperidine‐containing β2,3,3‐amino acids, upon basic or acid hydrolysis of the 2‐oxoazepane α,α‐amino acid ester. Under acidic conditions, a totally stereoselective synthetic route has been developed. The reordering process involved the spontaneous breakdown of an amide bond, which typically requires strong conditions, and the formation of a new bond leading to the six‐membered heterocycle. A quantum mechanical study was carried out to obtain insight into the remarkable ease of this rearrangement, which occurs at room temperature, either in solution or upon storage of the 4‐carboxylic acid substituted 2‐oxoazepane derivatives. This theoretical study suggests that the rearrangement process occurs through a concerted mechanism, in which the energy of the transition states can be lowered by the participation of a catalytic water molecule. Interestingly, it also suggested a role for the carboxylic acid at position 4 of the 2‐oxoazepane ring, which facilitates this rearrangement, participating directly in the intramolecular catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号