首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   15篇
化学   266篇
晶体学   1篇
力学   2篇
数学   6篇
物理学   63篇
  2023年   8篇
  2022年   5篇
  2021年   12篇
  2020年   8篇
  2019年   19篇
  2018年   9篇
  2017年   2篇
  2016年   10篇
  2014年   8篇
  2013年   14篇
  2012年   18篇
  2011年   17篇
  2010年   13篇
  2009年   11篇
  2008年   34篇
  2007年   14篇
  2006年   18篇
  2005年   15篇
  2004年   11篇
  2003年   10篇
  2002年   15篇
  2001年   2篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   7篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
331.
For a stationary centered Gaussian process, we construct a noncanonical representation which has an infinite-dimensional orthogonal complement that is nontrivial. The authors have already proposed a systematic method for the construction of noncanonical representation having a finite-dimensional orthogonal complement.  相似文献   
332.
A coupled-mode formulation for an NRD-guide coupler is presented using the singular perturbation technique. The first-order and second-order perturbations are taken into account in the analysis and the coupled-mode equations based on the eigenmodes of each waveguide in isolation are derived. The propagation constants obtained by these equations are compared with those by the exact theory, conventional coupled-mode theory, and improved coupled-mode theory. The numerical results of present formulation are in good agreement with the exact theory and superior to those of the other formulations.  相似文献   
333.
334.
335.
The differences in the polymerization abilities of N‐vinylformamide (NVF) and N‐vinylisobutyramide (NVIBA) and the synthesis of their copolymers were studied. The polymerization abilities were fairly good and quite similar to those of N‐vinyl‐ acetamide (NVA), a monomer in the same class as N‐vinylalkylamides. Since the monomer reactivity ratios were r1 = 1.08 and r2 = 0.92 (M1 = NVF, M2 = NVIBA), respectively, it is clear that the comonomers definitely were converted to random copolymers. The resulting copolymers poly(NVF‐co‐NVIBA) exhibited the cloud points sharply. The light transmittance profiles were the same as those for poly(NVIBA) although they increased from 39 °C for poly(NVIBA), with an increase in the corresponding hydrophilic NVF component. Our final objective was to produce a cloud point controlled polymer material with primary amino groups. To achieve this, we examined the hydrolysis of poly(NVF), poly(NVA), poly(NVIBA), and poly(NVF‐co‐NVIBA) to obtain poly(vinylamine) [poly(VAm)]. The hydrolytic cleavage of poly(NVF) and poly(NVA) was promoted by an increase in temperature. However, poly(NVIBA) was not cleaved appreciably. The hydrolysis of poly(NVF‐co‐NVIBA) was done under controlled conditions, and amino groups selectively were introduced to only one of two components of the copolymer. The cloud point of the hydrolyzed copolymer shifted to a higher temperature than that of the copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3674–3681, 2000  相似文献   
336.
A method for rotaxane synthesis by enlargement of the size of the terminal phenol group of the axle component by aromatic bromination has been developed. This method may be regarded as an end-capping strategy involving the swelling of the phenol group at the axle terminal. The advantages of the present strategy include: ready availability of axle components with a variety of swelling precursors, wide product scope (19 examples given including a [3]rotaxane), mild conditions for the swelling process, rich potential for the derivatization of the brominated rotaxanes, and possible release of the axle component by degradative dethreading of the thermally stable brominated rotaxanes under the basic conditions.  相似文献   
337.
How do we decide the stoichiometry of host–guest complexes?” This question has long been answered by the Job plot since its first report in 1928. However, as the Job plot was claimed to be misleading in 2016, the question became an open question again and called for renewed investigations. An information-theoretic approach, called Akaike's information criterion, is introduced in this study to select the best model of host–guest complexes, which can rank the models with weight of evidence. A few test cases with unique cylindrical hosts were examined to demonstrate the applicability of the information-theoretic method. Consequently, reasonable views over the thermodynamic behaviors of dumbbell-and-cylinder complexes were obtained. Akaike's information criterion can be a useful and superior alternative to statistical null hypothesis testing, which was proposed as a remedy in place of the Job plot.  相似文献   
338.
Alkali metal complexes of cyclic dipeptide cyclo Tyr-Tyr have been studied under cryogenic ion trap conditions. Their structure was obtained by combining Infra-Red Photo-Dissociation (IRPD) and quantum chemical calculations. The structural motif strongly depends on the relative chirality of the tyrosine residues. For residues of identical chirality, the cation interacts with one amide oxygen and one of the aromatic rings only; the distance between the aromatic rings does not change with the nature of the metal. In contrast, for residues of opposite chirality, the metal cation is located in between the two aromatic rings and interacts with both of them. The distance between the two aromatic rings strongly depends on the metal. Electronic spectra obtained by Ultra Violet Photodissociation (UVPD) spectroscopy and analysis of the UV photo-fragments shed light on the excited state deactivation processes, which depend on both the chirality of the residue and that of the metal ion core. Na+ stands out by the presence of low-lying charge transfer states resulting in the broadening of the electronic spectrum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号