首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   1篇
  国内免费   2篇
化学   75篇
晶体学   3篇
数学   20篇
物理学   37篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   1篇
  2014年   7篇
  2013年   7篇
  2012年   15篇
  2011年   6篇
  2010年   7篇
  2009年   5篇
  2008年   8篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   6篇
  2001年   2篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有135条查询结果,搜索用时 20 毫秒
71.
The automatic evaluation of the grating deformation in a moiré image is greatly enhanced by the phase shift method. Based on three or more local grey values of a related number of phase shifted moiré patterns, the local displacement of a deformed grating against a reference grating, and hence the total displacement in one direction, is calculated. In this paper an extension to cross gratings is presented yielding a two- dimensional displacement field.  相似文献   
72.
The dissociation pathways, kinetics, and energetics of protonated oligosaccharides in the gas phase were investigated using blackbody infrared radiative dissociation (BIRD). Time-resolved BIRD measurements were performed on singly protonated ions of cellohexaose (Cel6), which is composed of β-(1 → 4)-linked glucopyranose rings, and five malto-oligosaccharides (Malx, where x = 4–8), which are composed of α-(1 → 4)-linked glucopyranose units. At the temperatures investigated (85–160 °C), the oligosaccharides dissociate at the glycosidic linkages or by the loss of a water molecule to produce B- or Y-type ions. The Y ions dissociate to smaller Y or B ions, while the B ions yield exclusively smaller B ions. The sequential loss of water molecules from the smallest B ions (B1 and B2) also occurs. Rate constants for dissociation of the protonated oligosaccharides and the corresponding Arrhenius activation parameters (Ea and A) were determined. The Ea and A-factors measured for protonated Malx (x > 4) are indistinguishable within error (~19 kcal mol−1, 1010 s−1), which is consistent with the ions being in the rapid energy exchange limit. In contrast, the Arrhenius parameters for protonated Cel6 (24 kcal mol−1, 1012 s−1) are significantly larger. These results indicate that both the energy and entropy changes associated with the glycosidic bond cleavage are sensitive to the anomeric configuration. Based on the results of this study, it is proposed that formation of B and Y ions occurs through a common dissociation mechanism, with the position of the proton establishing whether a B or Y ion is formed upon glycosidic bond cleavage.  相似文献   
73.
Preventing ice growth on infrastructure, vehicles, and appliances remains a significant engineering challenge. Damage caused by ice growth on these installations can be expensive to repair, and their failure can be dangerous. Materials such as cross-linked polymer networks make effective anti-ice coatings and can prevent ice growth: reducing the cost of infrastructure repairs and limiting downtime. A link between cross-link density and ice adhesion has been demonstrated, such that lower cross-link density materials tend toward lower ice adhesion. Here we describe a method of lowering cross-link density by incorporating the covalently bound comonomers methyl methacrylate, lauryl methacrylate, and styrene into UV-cured PDMS-based polymer networks. Cross-link density, hardness, surface roughness, and ice adhesion on these materials are tested, showing the influence of comonomer proportions on their properties. Durability is found to increase with the addition of 5, 10, and 25 wt% comonomer, with little to no effect on ice adhesion until 25 wt%, where increases in ice adhesion are observed. Coatings show promisingly low ice adhesion of ~50 kPa, maintaining this low adhesion for up to 50 deicing cycles.  相似文献   
74.
Non-Uniform Rational B-Splines (NURBS) are basis functions used in CAD software to describe exact geometric models. The implementation of these basis functions in the context of the Finite Element Analysis (FEA) is known as isogeometric analysis. The concept and definition of NURBS is briefly presented here. Since these functions are implemented as shape functions for the isogeometric analysis, the refinement strategies are discussed. The example of an infinite plate with circular hole serves as a benchmark. Finally, isogeometric analysis is applied to gradient elasticity since NURBS functions are of higher continuity and this is required in gradient elasticity. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
75.
76.
A comparison for a range of linear equation problems Ax = b between LINSYS, IBMSSP and IMSL is made.  相似文献   
77.
Blackbody infrared radiative dissociation (BIRD) and functional group replacement are used to map the location and strength of hydrogen bonds between an antibody single chain fragment (scFv) and its natural trisaccharide receptor, alpha-D-Galp (1-->2)[alpha-D-Abep (1-->3)]alpha-D-Manp1-->OMe (1), in the gaseous, multiply protonated complex. Arrhenius activation parameters (E(a) and A) are reported for the loss of 1 and a series of monodeoxy trisaccharide congeners (5-8 identical with tri) from the (scFv + tri + 10H)(+10) complex. The energetic contribution of the specific oligosaccharide OH groups to the stability of the (scFv + 1 + 10H)(+10) complex is determined from the differences in E(a) measured for the trisaccharide analogues and 1 (55.2 kcal/mol). A decrease of 6 to 11 kcal/mol in E(a), measured for the monodeoxy trisaccharides, indicates that the deleted OH groups interact strongly with the scFv and that they account for a majority of the stabilizing intermolecular interactions. A partial map of the hydrogen bond donor/acceptor groups of 1 and the strength of the interactions is presented for the protonated +10 complex. A comparison of the gas-phase map with the crystal structure indicates that significant structural differences exist. The hydroxyl groups located outside of the binding pocket, and exposed to solvent in solution, participate in new protein-oligosaccharide hydrogen bonds in the gas phase. The decrease in kinetic and energetic stability of the (scFv + 2 + nH)(n)()(+) complex with increasing charge-state is attributed to conformational differences in the binding region induced by electrostatic repulsion. The similarity in the Arrhenius parameters for the +9 and +10 charge states suggests that repulsion effects on the structure of the binding region are negligible below +11.  相似文献   
78.

Background  

Voltage-gated ion channels are membrane proteins containing a selective pore that allows permeable ions to transit the membrane in response to a change in the transmembrane voltage. The typical selectivity filter in potassium channels is formed by a tetrameric arrangement of the carbonyl groups of the conserved amino-acid sequence Gly-Tyr-Gly. This canonical pore is opened or closed by conformational changes that originate in the voltage sensor (S4), a transmembrane helix with a series of positively charged amino acids. This sensor moves through a gating pore formed by elements of the S1, S2 and S3 helices, across the plane of the membrane, without allowing ions to pass through the membrane at that site. Recently, synthetic mutagenesis studies in the Drosophila melanogaster Shaker channel and analysis of human disease-causing mutations in sodium channels have identified amino acid residues that are integral parts of the gating-pore; when these residues are mutated the proteins allow a non-specific cation current, known as the omega current, to pass through the gating-pore with relatively low selectivity.  相似文献   
79.
The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase.
Graphical Abstract ?
  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号