首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1596篇
  免费   80篇
  国内免费   24篇
化学   1099篇
晶体学   15篇
力学   75篇
数学   146篇
物理学   365篇
  2024年   6篇
  2023年   18篇
  2022年   101篇
  2021年   76篇
  2020年   72篇
  2019年   59篇
  2018年   73篇
  2017年   77篇
  2016年   77篇
  2015年   58篇
  2014年   78篇
  2013年   150篇
  2012年   133篇
  2011年   118篇
  2010年   56篇
  2009年   61篇
  2008年   65篇
  2007年   59篇
  2006年   50篇
  2005年   44篇
  2004年   44篇
  2003年   39篇
  2002年   37篇
  2001年   17篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   10篇
  1995年   12篇
  1994年   9篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   3篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1970年   2篇
  1969年   2篇
排序方式: 共有1700条查询结果,搜索用时 15 毫秒
101.
Journal of Thermal Analysis and Calorimetry - Owing to the high nucleation site density and relatively robust behavior, sintered coated surfaces are of great interest for thermal management via...  相似文献   
102.
103.
104.
Tariq  M.  Sirajuddin  M.  Ali  S.  Khalid  N.  Shah  N. A. 《Russian Journal of General Chemistry》2017,87(11):2690-2698

Six new organotin(IV) carboxylates, [Me2SnL2] (1), [n-Bu2SnL2] (2), [n-Oct2SnL2] (3), [Me3SnL] (4), [n-Bu3SnL] (5) and [Ph3SnL] (6), where L = 3-(4-ethoxyphenyl)-2-methylacrylate, have been synthesized and characterized by FT-IR, NMR spectroscopy and elemental analyses. The synthesized compounds were tested for in vitro antibacterial and antifungal activities. The complexes 4–6 demonstrated higher activity than the complexes 1–3. UV-Vis absorption spectroscopy indicated that the ligand and its complexes interacted with DNA via partial intercalation as well as minor groove binding.

  相似文献   
105.
Russian Journal of General Chemistry - Six new bis-diorganotin(IV) complexes, [(Me2Sn)2L] (1), [(Et2Sn)2L] (2), [(n-Bu2Sn)2L] (3), [(Ph2Sn)2L] (4), [(n-Oct2Sn)2L] (5), and [(tert-C4H9)2Sn)2L] (6),...  相似文献   
106.
Counterfeiting of pharmaceuticals has become a serious problem all over the world, particularly in developing countries. In the present work, a highly sensitive LC–MS/MS method was developed for simultaneous determination of tramadol hydrochloride in the presence of some suspected mislabeled drugs such as alprazolam, diazepam, chlorpheniramine maleate, diphenylhydramine and paracetamol. The prepared samples were analyzed on an API 4000 mass spectrometer using an Eclipse C18 column (3.5 μm, 4.6 × 100 mm). The mobile phase consisting of 0.01% formic acid, acetonitrile and methanol (60:20:20 v/v/v) was pumped with an isocratic elution at a flow rate of 0.7 mL min?1. The detection was achieved on a triple quadruple tandem mass spectrometer in multiple reaction monitoring mode. The proposed method was successfully validated according to International Conference on Harmonization guidelines with respect to accuracy, precision, linearity, limit of detection and limit of quantitation. The calibration linear range for tramadol hydrochloride, alprazolam, diazepam, chlorpheniramine maleate, diphenylhydramine and paracetamol was 5–500 ng mL?1. The results revealed that the applied method is promising for the differentiation of genuine tramadol tablets from counterfeit ones without prior separation.  相似文献   
107.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized by glutaric dihydrazide (GDH) and characterized with FT-IR technique. This new sorbent was used for enrichment and preconcentration of Co(II), Cd(II), Pb(II), and Pd(II) ions. The adsorption was achieved quantitatively on MWCNTs at pH 4.0, and then the retained metal ions on the adsorbent were eluted with 1.5 mol L?1 HNO3. The effects of analytical parameters including pH of the solution, eluent type, sample volume, and matrix ions were investigated for optimization of the presented procedure. The adsorption capacity of the adsorbent at optimum conditions was found to be 33.6, 29.2, 22.1, and 36.0 mg g?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The LOD values of the method were 0.16, 0.19, 0.17, and 0.12 ng mL?1 (3Sb, n = 10) for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The RSDs values of the method were 0.75, 0.85, 1.16, and 1.30 ng mL?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The method was applied for the determination of analytes in soil, well water, and wastewater samples with satisfactory results.  相似文献   
108.
2-Hydroxy salicylhydrazide isatin hydrazone (L) and its Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes were synthesized. 1H NMR, UV–Vis, IR spectroscopy and elemental (CHN/S) analysis techniques were applied for characterization. TG/DTA techniques revealed that all the synthetic compounds are thermally stable up to 300 °C. They were found non-electrolytes in nature. Furthermore, all these complexes were evaluated for antiglycation and DPPH radical scavenging activities. They showed varying degree of activity with IC50 values between 168.23 and 269.0 μM in antiglycation and 29.63–57.71 μM in DPPH radical scavenging activity. Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes showed good antiglycation as well as DPPH radical scavenging activity. The IC50 values for antiglycation activity are 168.23 ± 2.37, 234.27 ± 4.33, 257.1 ± 6.43, 267.7 ± 8.43, 269.0 ± 8.56 Ni for Co, Zn, Mn, Cu, and Ni complexes, respectively, while IC50 value were found to be 29.63 ± 2.76, 31.13 ± 1.41, 35.16 ± 2.45, 43.53 ± 3.12, 57.71 ± 2.61 μM for Cu, Zn, Mn, Co and Ni complexes, respectively, for DPPH radical scavenging activity. These synthesized metal complexes were found to be better active than standards Rutin (IC50 = 294.46 μM) for anti-glycation, and tert-butyl-4-hydroxyanisole (IC50 = 44.7 μM) for DPPH radical scavenging activity.  相似文献   
109.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号