首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
化学   7篇
物理学   6篇
  2019年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有13条查询结果,搜索用时 78 毫秒
11.
We have previously postulated a serine gated electron transfer hypothesis (Inorg. Chem, 2002, 41, 1281-1291) to possibly be involved in gating electron transfer between the Mo(V) and Mo(IV) states. In this study we explored the effect of solvent dielectric upon the rate and mechanism of isomerization of an oxo-Mo(V) core in attempt to understand the effect of solvent polarity to the isomerization reaction. To this end, the data suggests that there may be significant entropic contributions to the reorganization of metal center as a function of the local dielectric constant. Furthermore, we note that there is a change in the observed rate as well as the mechanism of the geometric rearrangement when it is examined in polar and non-polar environments. More specifically, in low dielectric media, the reaction proceeds either via a fast dissociation which is then followed by a twist mechanism or by a dissociation that is synchronized with the twist mechanism.  相似文献   
12.
Crystal structures of DMSO reductases isolated from two different sources and the crystal structure of related trimethylamine-N-oxide reductase indicate that the angle between the terminal oxo atom on the molybdenum and the serinato oxygen varies significantly. To understand the significance of this angular variation, we have synthesized two isomeric compounds of the heteroscorpionato ligand (L1OH) (cis- and trans-(L1O)Mo(V)OCl(2)), where the phenolic oxygen mimics the serinato oxygen donor. Density functional and semiempirical calculations indicate that the trans isomer is more stable than the cis. The lower stability of the cis isomer can be attributed to two factors. First, a strong antibonding interaction between the phenolic oxygen with molybdenum d(xy) orbital raises the energy of this orbital. Second, the strong trans influence of the terminal oxo group in the trans isomer places the phenol ring, and hence the bulky tertiary butyl group, in a less sterically hindered position. In solution, the cis isomer spontaneously converts to the thermodynamically favorable trans isomer. This geometric transformation follows a first-order process, with an enthalpy of activation of 20 kcal/mol and an entropy of activation of -9 cal/mol K. Computational analysis at the semiempirical level supports a twist mechanism as the most favorable pathway for the geometric transformation. The twist mechanism is further supported by detailed mass spectral data collected in the presence of excess tetraalkylammonium salts. Both the cis and trans isomers exhibit well-defined one-electron couples due to the reduction of molybdenum(V) to molybdenum(IV), with the cis isomer being more difficult to reduce. Both isomers also exhibit oxidative couples because of the oxidation of molybdenum(V) to molybdenum(VI), with the cis isomer being easier to oxidize. This electrochemical behavior is consistent with a higher-energy redox orbital in the cis isomer, which has been observed computationally. Collectively, this investigation demonstrates that by changing the O(t)-Mo-O(p) angle, the reduction potential can be modulated. This geometrically controlled modulation may play a gating role in the electron-transfer process during the regeneration steps in the catalytic cycle.  相似文献   
13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号