首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8171篇
  免费   1368篇
  国内免费   948篇
化学   6125篇
晶体学   124篇
力学   465篇
综合类   45篇
数学   926篇
物理学   2802篇
  2024年   14篇
  2023年   226篇
  2022年   301篇
  2021年   358篇
  2020年   492篇
  2019年   456篇
  2018年   422篇
  2017年   386篇
  2016年   511篇
  2015年   530篇
  2014年   523篇
  2013年   711篇
  2012年   803篇
  2011年   781篇
  2010年   556篇
  2009年   494篇
  2008年   514篇
  2007年   424篇
  2006年   367篇
  2005年   293篇
  2004年   231篇
  2003年   160篇
  2002年   175篇
  2001年   115篇
  2000年   113篇
  1999年   99篇
  1998年   45篇
  1997年   44篇
  1996年   39篇
  1995年   34篇
  1994年   9篇
  1993年   29篇
  1992年   22篇
  1991年   16篇
  1990年   18篇
  1989年   10篇
  1988年   19篇
  1986年   15篇
  1985年   18篇
  1984年   11篇
  1983年   6篇
  1982年   13篇
  1980年   6篇
  1979年   11篇
  1978年   8篇
  1977年   5篇
  1976年   7篇
  1975年   7篇
  1974年   5篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 984 毫秒
991.
The interaction between bovine serum albumin (BSA) and pegylated puerarin (Pur) in aqueous solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy and circular dichroism spectra (CD), as well as dynamic light scattering (DLS). The fluorescence of BSA was strongly quenched by the binding of pegylated Pur to BSA. The binding constants and the number of binding sites of mPEG(5000)-Pur with BSA were 2.67±0.12 and 1.37±0.05 folds larger after pegylating, which were calculated from the data obtained from fluorescence quenching experiments. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be 4.09 kJ mol(-1) and 20.01 J mol(-1) K(-1), respectively, according to Van't Hoff equation, indicating that the hydrophobic force plays a main role in the binding interaction between pegylated Pur and BSA. In addition, the negative sign for Gibbs free energy change (ΔG) implies that the interaction process is spontaneous. Moreover, the results of synchronous fluorescence and CD spectra demonstrated that the microenvironment and the secondary conformation of BSA were changed. Comparing with Pur, all our data collected indicated that pegylated Pur interacted with BSA in the same way as that of Pur, but docked into the hydrophobic pocket of BSA with more accessibility and stronger binding force. DLS measurements showed monomethoxy polyethylene glycol (mPEG) have an effect on BSA conformation, and revealed that changes in BSA size might be due to increases in binding constant and the absolute values of ΔG after Pur pegylation.  相似文献   
992.
This paper reports a detailed theoretical calculation of the temperature dependence of zero-field splitting D (characterized by ΔD(T)=D(T)-D(0)) for the tetragonal Cr3+ center in MgO crystal by considering both the static contribution due to the thermal expansion of Cr3+ center and the vibrational contribution caused by electron-phonon (including the acoustic and optical phonons) interaction. The vibrational contribution due to the acoustic phonon is calculated using the long-wave approximation similar to the study on the specific heat of crystals and that due to optical phonon is estimated using the single-phonon model. The calculated results are in reasonable agreement with the experimental values. From the calculation, it is found that the static contribution ΔDstat(T) (which is often regarded as very small and is neglected in the previous papers) is larger than the vibrational contribution ΔDvib(T) and so the reasonable studies of temperature dependence of zero-field splitting should take both the static and the vibrational contributions into account.  相似文献   
993.
A strong solid/liquid interfacial interaction is found between porous alumina and graphene oxide (GO) aqueous dispersion, which promotes a fast enrichment of GO on the alumina surface and results in the formation of a GO hydrogel.  相似文献   
994.
Precursor-fed cultivation of endophytic Chaetomium globosum 1C51 afforded nine novel "unnatural" halogenated chaetoglobosins including those with more preferable immunosuppressive activity.  相似文献   
995.
A complex of Erbium perchloric acid coordinated with l-aspartic acid and imidazole, Er2(Asp)2(Im)8(ClO4)6·10H2O was synthesized for the first time. It was characterized by IR and elements analysis. The heat capacity and thermodynamic properties of the complex were studied with an adiabatic calorimeter (AC) from 80 to 390 K and differential scanning calorimetry (DSC) from 100 to 300 K. Glass transition and phase transition were discovered at 220.45 and 246.15 K, respectively. The glass transition was interpreted as a freezing-in phenomenon of the reorientational motion of ClO4− ions and the phase transition was attributed to the orientational order/disorder process of ClO4− ions. The thermodynamic functions [H T  − H 298.15] and [S T  − S 298.15] were derived in the temperature range from 80 to 390 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC).  相似文献   
996.
Thermal behavior of 1,2,3-triazole nitrate   总被引:1,自引:0,他引:1  
The thermal decomposition behaviors of 1,2,3-triazole nitrate were studied using a Calvet Microcalorimeter at four different heating rates. Its apparent activation energy and pre-exponential factor of exothermic decomposition reaction are 133.77 kJ mol−1 and 1014.58 s−1, respectively. The critical temperature of thermal explosion is 374.97 K. The entropy of activation (ΔS ), the enthalpy of activation (ΔH ), and the free energy of activation (ΔG ) of the decomposition reaction are 23.88 J mol−1 K−1, 130.62 kJ mol−1, and 121.55 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 368.65 K. The specific heat capacity was determined by a Micro-DSC method and a theoretical calculation method. Specific heat capacity equation is C\textp ( \textJ mol - 1 \text K - 1 ) = - 42.6218 + 0.6807T C_{\text{p}} \left( {{\text{J mol}}^{ - 1} {\text{ K}}^{ - 1} } \right) = - 42.6218 + 0.6807T (283.1 K < T < 353.2 K). The adiabatic time-to-explosion is calculated to be a certain value between 98.82 and 100.00 s. The critical temperature of hot-spot initiation is 637.14 K, and the characteristic drop height of impact sensitivity (H 50) is 9.16 cm.  相似文献   
997.
998.
Epitope prediction based on random peptide library screening has become a focus as a promising method in immunoinformatics research. Some novel software and web-based servers have been proposed in recent years and have succeeded in given test cases. However, since the number of available mimotopes with the relevant structure of template-target complex is limited, a systematic evaluation of these methods is still absent. In this study, a new benchmark dataset was defined. Using this benchmark dataset and a representative dataset, five examples of the most popular epitope prediction software products which are based on random peptide library screening have been evaluated. Using the benchmark dataset, in no method did performance exceed a 0.42 precision and 0.37 sensitivity, and the MCC scores suggest that the epitope prediction results of these software programs are greater than random prediction about 0.09-0.13; while using the representative dataset, most of the values of these performance measures are slightly improved, but the overall performance is still not satisfactory. Many test cases in the benchmark dataset cannot be applied to these pieces of software due to software limitations. Moreover chances are that these software products are overfitted to the small dataset and will fail in other cases. Therefore finding the correlation between mimotopes and genuine epitope residues is still far from resolved and much larger dataset for mimotope-based epitope prediction is desirable.  相似文献   
999.
The two-state reaction mechanism of the Pt4+/− with N2O (CO) on the quartet and doublet potential energy surfaces has been investigated at the B3LYP level. The effect of Pt4 anion assistance is analyzed using the activation strain model in which the activation energy (ΔΕ ) is decomposed into the distortion energies (\Updelta E 1 \textdist ) (\Updelta E^{ \ne }_{\text{dist}} ) and the stabilizing transition state (TS) interaction energies (\Updelta E 1 \textint ) (\Updelta E^{ \ne }_{\text{int}} ) , namely \Updelta E 1 = \Updelta E 1 \textdist + \Updelta E 1 \textint \Updelta E^{ \ne } = \Updelta E^{ \ne }_{\text{dist}} + \Updelta E^{ \ne }_{\text{int}} . The lowering of activation barriers through Pt4 anion assistance is caused by the TS interaction \Updelta E 1 \textint \Updelta E^{ \ne }_{\text{int}} (−90.7 to −95.6 kcal/mol) becoming more stabilizing. This is attributed to the N2O π*-LUMO and Pt d HOMO back-donation interactions. However, the strength of the back-donation interactions has significantly impact on the reaction mechanism. For the Pt4 anion system, it has very significant back-bonding interaction (N2O negative charge of 0.79e), HOMO has 81.5% π* LUMO(N2O) character, with 3d orbital contributions of 10.7% from Pt(3) and 7.7% from Pt(7) near the 4TS4 transition state. This facilitates the bending of the N2O molecule, the N–O bond weakening, and an O(2P) dissociation without surface crossing. For the Pt4 + cation system, the strength of the charge transfer is weaker, which leads to the diabatic (spin conserving) dissociation of N2O: N2O(1+) → N2(1g+) + O(1D). The quartet to doublet state transition should occur efficiently near the 4TS1 due to the larger SOC value calculated of 677.9 cm−1. Not only will the reaction overcome spin-change-induced barrier (ca. 7 kcal/mol) but also overcome adiabatic barrier (ca. 40.1 kcal/mol).Therefore, the lack of a thermodynamic driving force is an important factor contributing to the low efficiency of the reaction system.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号