首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   640篇
  免费   32篇
  国内免费   3篇
化学   424篇
晶体学   2篇
力学   18篇
数学   120篇
物理学   111篇
  2023年   1篇
  2022年   1篇
  2021年   12篇
  2020年   10篇
  2019年   14篇
  2018年   5篇
  2017年   12篇
  2016年   20篇
  2015年   24篇
  2014年   32篇
  2013年   35篇
  2012年   51篇
  2011年   53篇
  2010年   33篇
  2009年   36篇
  2008年   32篇
  2007年   19篇
  2006年   30篇
  2005年   25篇
  2004年   27篇
  2003年   19篇
  2002年   23篇
  2001年   14篇
  2000年   11篇
  1999年   15篇
  1998年   12篇
  1997年   14篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   10篇
  1992年   7篇
  1991年   2篇
  1990年   6篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   1篇
  1982年   7篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1955年   1篇
排序方式: 共有675条查询结果,搜索用时 15 毫秒
61.
The operating parameters that affect the performance of the online preconcentration technique “analyte focusing by micelle collapse‐MEKC (AFMC‐MEKC)” were examined using a multivariate approach involving experimental design to determine the sunscreen agents in cosmetics. Compared to the single‐variable approach, the advantage of the multivariate approach was that many factors could be investigated simultaneously to obtain the best separation condition. A fractional factorial design was used to identify the fewest significant factors in the central composite design (cCD). The cCD was adopted for evaluating the location of the minimum or maximum response in this study. The influences of the experimental variables on the response were investigated by applying a chromatographic exponential function. The optimized condition and the relationship between the experimental variables were acquired using the JMP software. The ANOVA analysis indicated that the Tris pH value, SDS concentration, and ethanol percentage influenced the separation quality and significantly contributed to the model. The optimized condition of the running buffer was 10 mM Tris buffer (pH 9.5) containing 60 mM SDS, 7 mM γ‐CD, and 20% v/v ethanol. The sample was prepared in 100 mM Tris buffer (pH 9.0) containing 7.5 mM SDS and 20% v/v ethanol. The SDS concentration in the sample matrix was slightly greater than the CMC value that makes the micelle be easily collapsed and the analytes be accumulated in the capillary. In addition, sunscreen agents in cosmetics after 1000‐fold dilution were successfully determined by AFMC‐MEKC.  相似文献   
62.
In this work we demonstrated a facile method for the fabrication of C18 coordination polymer gel in a capillary, called stage-frit, which was efficiently applied to pack sub-2 μm C18 beads into the capillary by a high pressure bomb for the online separation of proteolytic peptides. The back pressure of the column with 10 cm × 75 μm i.d. is regularly lower than 170 bar at a flow rate of 300 nl/min, which could be operated on a common nanoLC system instead of nanoUPLC system due to the good permeability, low back pressure and high mechanical stress of the frit that will totally reduce the cost for the purchase of instrument. The stage-frit allows long-term continuous flow of the solvent and no significant beads loss or pressure instability was observed during the period. The repeatability of retention time for fifteen BSA tryptic peaks was found to be less than 1.08% (RSD) in six time nanoLC-ESI-MS/MS experiments. The average full width at half maximum (FWHM) of peptide peaks is 5.87 s. The sub-2 μm stage-frit nanoLC column showed better sensitivity than the commercial available for large scale proteomic analysis of total tissue proteins from human spleen. The number of identified peptides is approximately 0.4-fold and 0.2-fold higher than that obtained by utilizing commercial columns packed with 3 μm and 1.8 μm C18 materials, respectively. In the field of analytical chemistry, particularly the use of nanoLC systems, stage-frit nanoLC column offers a great potential for the separation of complex mixtures.  相似文献   
63.
Hydrogel microfibers have been considered as a potential biomaterial to spatiotemporally biomimic 1D native tissues such as nerves and muscles which are always assembled hierarchically and have anisotropic response to external stimuli. To produce facile hydrogel microfibers in a mathematical manner, a novel dynamic‐crosslinking‐spinning (DCS) method is demonstrated for direct fabrication of size‐controllable fibers from poly(ethylene glycol diacrylate) oligomer in large scale, without microfluidic template and in a biofriendly environment. The diameter of fibers can be precisely controlled by adjusting the spinning parameters. Anisotropic swelling property is also dependent on inhomogeneous structure generated in spinning process. Comparing with bulk hydrogels, the resulting fibers exhibit superior rapid water adsorption property, which can be attributed to the large surface area/volume ratio of fiber. This novel DCS method is one‐step technology suitable for large‐scale production of anisotropic hydrogel fibers which has a promising application in the area such as biomaterials.

  相似文献   

64.
65.
This work describes the preparation of [PNP]ZrX3 ([PNP] = [N(o-C6H4PiPr2)2]; X = Cl, Me, CH2SiMe3) whose structural preference is found to be a function of the electronic and steric nature of the monodentate ligand X. The reaction of ZrCl4(THF)2 with [PNP]Li in toluene at room temperature generates [PNP]ZrCl3 as a red solid in 60% yield. Alkylation of [PNP]ZrCl3 with three equivalents of Grignard reagents in diethyl ether at −35 °C produces cleanly [PNP]ZrR3 (R = Me, CH2SiMe3) as yellow crystalline materials. An X-ray diffraction study of [PNP]ZrCl3 showed it to be a chloride-bridged binuclear species {[PNP]ZrCl2(μ−Cl)}2 in which both zirconium atoms are 7-coordinate whereas that of [PNP]ZrMe3 revealed a mononuclear, 6-coordinate core structure. Interestingly, with the incorporation of more sterically demanding alkyls, [PNP]Zr(CH2SiMe3)3 is a 5-coordinate compound wherein the amido phosphine ligand is κ2-N,P bound to zirconium. The solution structures of these molecules were also assessed by variable-temperature NMR spectroscopy.  相似文献   
66.
This work presents the unique features of a novel configuration of a synchronized dual-polarity time-of-flight mass spectrometer for comprehensive surface imaging. Mass spectrometry imaging of surface samples covering positive and negative ion modes is difficult due to rapid signal depletion. This limitation is overcome here by dual-polarity time-of-flight mass spectrometry (DP-TOFMS) via two separate TOF mass analyzers that are installed above a sample surface. The new instrument eliminates the polarity bias characteristic of most mass spectrometers, which is important for the analysis of samples with diverse physical and chemical properties. The experimental results show for the first time that the spatial distribution of positive and negative ions of various photolabile samples can be distinguished, including pigments and conventional matrix-assisted laser desorption/ionization samples. The different positive and negative ion distributions suggest that accurate quantitative information can only be obtained when the entire sample region is examined by DP-TOFMS, which was unfeasible in the past. Such a comprehensive diagnostic method is essential for the molecular imaging of trace compositions in delicate biological tissues, as demonstrated here with a Phyllanthus urinaria leaf that only produced ion signals in the first examination and not in the subsequent measurements.  相似文献   
67.
68.
Luecha J  Hsiao A  Brodsky S  Liu GL  Kokini JL 《Lab on a chip》2011,11(20):3419-3425
An alternative green microfluidic device made of zein, a prolamin of corn, can be utilized as a disposable environmentally friendly microchip especially in agriculture applications. Using standard soft lithography and stereo lithography techniques, we fabricated thin zein films with microfluidic chambers and channels. These were bonded to both a glass slide and another zein film. The zein film with microfluidic features bonds irreversibly with other surfaces by vapor-deposition of ethanol to create an adhesive layer resulting in very little or no trapped air and small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design that showed no leakage under high hydraulic pressure. Zein-glass microfluidic devices with serpentine mixing design showed successful fluid manipulation as a concentration gradient of Rhodamine B solution was generated. The ease of fabrication and bonding and the flexibility and moldability of zein offer attractive possibilities for microfluidic device design and manufacturing. These devices can include several unit operations with mixing being one of the most commonly used. The zein-based microfluidic devices, made entirely from a biopolymer from agricultural origin, offer alternative environmentally friendly material choices that are less dependent on limited petroleum based polymer resources.  相似文献   
69.
Compared to conventional molecular solvents, the ionic liquid [b-3C-im][NTf(2)] was found to promote transimination reactions with up to ~100-fold rate enhancement. This rate effect observed at ambient temperature might be explained by the fact that the ionic liquid displays weak Lewis acidity with very low, if any, nucleophilicity and its imidazolium cation is expected to interact by associating with, and thus electrophilically activating, the C=N bond of the starting imine, leading to increased stabilization of the polar, charged intermediate species and ultimately, rapid product formation. Moreover, the presence of 1 mol% Sc(OTf)(3) in [b-3C-im][NTf(2)] further facilitates the transimination reactions studied.  相似文献   
70.
A new oxidation procedure of alkynes catalyzed by Tp(PPh(3))(CH(3)CN)Ru-Cl is presented, which provides an efficient way to obtain alkenyl 1,2-diketones via ruthenium alkenyl 1,2-diketone intermediates. In contrast, the analogous reactions with Tp(PPh(3))(PhCN)Ru-Cl gave rise to the ruthenium metallacycle complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号