首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6173篇
  免费   147篇
  国内免费   31篇
化学   4271篇
晶体学   38篇
力学   114篇
数学   1157篇
物理学   771篇
  2020年   53篇
  2019年   64篇
  2018年   58篇
  2016年   102篇
  2015年   95篇
  2014年   132篇
  2013年   285篇
  2012年   209篇
  2011年   251篇
  2010年   164篇
  2009年   184篇
  2008年   250篇
  2007年   220篇
  2006年   224篇
  2005年   228篇
  2004年   197篇
  2003年   173篇
  2002年   179篇
  2001年   122篇
  2000年   119篇
  1999年   70篇
  1998年   94篇
  1997年   99篇
  1996年   105篇
  1995年   91篇
  1994年   98篇
  1993年   97篇
  1992年   98篇
  1991年   99篇
  1990年   81篇
  1989年   108篇
  1988年   119篇
  1987年   108篇
  1986年   87篇
  1985年   101篇
  1984年   102篇
  1983年   63篇
  1982年   75篇
  1981年   86篇
  1980年   115篇
  1979年   85篇
  1978年   86篇
  1977年   66篇
  1976年   61篇
  1975年   75篇
  1974年   60篇
  1973年   66篇
  1972年   45篇
  1971年   49篇
  1970年   48篇
排序方式: 共有6351条查询结果,搜索用时 15 毫秒
991.
The structure of a single alanine-based Ace-AEAAAKEAAAKA-Nme peptide in explicit aqueous electrolyte solutions (NaCl, KCl, NaI, and KF) at large salt concentrations (3-4 M) is investigated using approximately 1 mus molecular dynamics (MD) computer simulations. The peptide displays 71% alpha-helical structure without salt and destabilizes with the addition of NaCl in agreement with experiments of a somewhat longer version. It is mainly stabilized by direct and indirect (" i + 4")EK salt bridges between the Lys and Glu side chains and a concomitant backbone shielding mechanism. NaI is found to be a stronger denaturant than NaCl, while the potassium salts hardly show influence. Investigation of the molecular structures reveals that consistent with recent experiments Na (+) has a much stronger affinity to side chain carboxylates and backbone carbonyls than K (+), thereby weakening salt bridges and secondary structure hydrogen bonds. At the same time, the large I (-) has a considerable affinity to the nonpolar alanine in line with recent observations of a large propensity of I (-) to adsorb to simple hydrophobes, and thereby "assists" Na (+) in its destabilizing action. In the denatured states of the peptide, novel long-lived (10-20 ns) "loop" configurations are observed in which single Na (+) ions and water molecules are hydrogen-bonded to multiple backbone carbonyls. In an attempt to analyze the denaturation behavior within the preferential interaction formalism, we find indeed that for the strongest denaturant, NaI, the protein is least hydrated. Additionally, a possible indication for protein denaturation might be a preferential solvation of the peptide backbone by the destabilizing cosolute (sodium). The mechanisms found in this work may be of general importance to understand salt effects on protein secondary structure stability.  相似文献   
992.
The adsorption of octylamine on Au(111) under ultrahigh vacuum conditions is investigated. The molecules surprisingly undergo a thermally activated chemical reaction, resulting in formation of trioctylamine as confirmed both by X-ray photoelectron spectroscopy (XPS) and by comparison to the scanning tunneling microscopy (STM) signature of trioctylamine deposited directly onto the surface.  相似文献   
993.
Insights to the mechanism of CdSe nanoparticle attachment to carbon nanotubes following the hot injection method are discussed. It was observed that the presence of water improves the nanotube coverage while Cl containing media are responsible for the shape transformation of the nanoparticles and further attachment to the carbon lattice. The experiments also show that the mechanism taking place involves the right balance of several factors, namely, low passivated nanoparticle surface, particles with well-defined crystallographic facets, and interaction with an organics-free sp2 carbon lattice. Furthermore, this procedure can be extended to cover graphene by quantum dots.  相似文献   
994.
The synthesis of novel triaryl‐substituted 4‐(isothiazol‐3‐yl)morpholines 7 and 8 , and 1‐(isothiazol‐3‐yl)piperazines 9 – 13 by reaction of the corresponding isothiazolium salts 5 and 6 with secondary amines in the presence of t‐BuOK in absolute THF is described. Some representatives of the isothiazoles were evaluated as inhibitors of acetylcholinesterase from Electrophorus electricus.  相似文献   
995.
A series of synthetic [2Fe-2S] complexes with terminal thiophenolate ligands and tethered ether or thioether moieties has been prepared and investigated in order to provide models for the potential interaction of additional donor atoms with the Fe atoms in biological [2Fe-2S] clusters. X-ray crystal structures have been determined for six new complexes that feature appended Et (1(C)), OMe (1(O)), or SMe (1(S)) groups, or with a methylene group (2(C) ), an ether-O (2(O)), or an thioether-S (2(S)) linking two aryl groups. The latter two systems provide a constrained chelate arrangement that induces secondary bonding interactions with the ether-O and thioether-S, which is confirmed by density functional theory (DFT) calculations that also reveal significant spin density on those fifth donor atoms. Structural consequences of the secondary bonding interactions are analyzed in detail, and effects on the spectroscopic and electronic properties are probed by UV-vis, M?ssbauer, and (1)H NMR spectroscopy, as well by SQUID measurements and cyclic voltammetry. The potential relevance of the findings for biological [2Fe-2S] sites is considered.  相似文献   
996.
An ω,ω′-disubstituted hypericin derivative bearing two dicyclohexylurea moieties separated by propionyl chains from the chromophore and an ω,ω′-dithioacetal of hypericin were prepared. Both showed excellent production of oxidizing species comparable to hypericin when irradiated with appropriate light as shown by the photodestruction of bilirubin IXα.  相似文献   
997.
Although tremendous progress has been made in the diagnosis of melanoma, the identification of different stages of malignancy in a reliable way remains challenging. Current strategies rely on optical monitoring of the concentration and spatial distribution of specific biomarkers. State‐of‐the‐art optical methods can be affected by background‐color interference and autofluorescence. We overcame these shortcomings by employing scanning electrochemical microscopy (SECM) to map the prognostic indicator tyrosinase (TyR) in non‐metastatic and metastatic melanoma tissues by using soft‐stylus microelectrodes. Electrochemical readout of the TyR distribution was enabled by adapting an immunochemical method. SECM can overcome the limitations of optical methods and opens unprecedented possibilities for improved diagnosis and understanding of the spatial distribution of TyR in different melanoma stages.  相似文献   
998.
G‐protein‐coupled receptors (GPCRs) are involved in a wide range of physiological processes, and they have attracted considerable attention as important targets for developing new medicines. A central and largely unresolved question in drug discovery, which is especially relevant to GPCRs, concerns ligand selectivity: Why do certain molecules act as activators (agonists) whereas others, with nearly identical structures, act as blockers (antagonists) of GPCRs? To address this question, we employed all‐atom, long‐timescale molecular dynamics simulations to investigate how two diastereomers (epimers) of dihydrofuroaporphine bind to the serotonin 5‐HT1A receptor and exert opposite effects. By using molecular interaction fingerprints, we discovered that the agonist could mobilize nearby amino acid residues to act as molecular switches for the formation of a continuous water channel. In contrast, the antagonist epimer remained firmly stabilized in the binding pocket.  相似文献   
999.
When applied to a pure component suspension in an apolar solvent, a strong inhomogeneous electric field induces particle movement, and the particles are collected at the surface of one of the two electrodes. This new phenomenon was used to separately isolate two organic crystalline compounds, phenazine and caffeine, from their suspension in 1,4‐dioxane. First, crystals of both compounds were collected at different electrodes under the influence of an electric field. Subsequent cooling crystallization enabled the immobilization and growth of the particles on the electrodes, which were separately collected after the experiment with purities greater than 91 %. This method can be further developed into a technique for crystal separation and recovery in complex multicomponent suspensions of industrial processes.  相似文献   
1000.
Aqueous solutions of salts at elevated pressures and temperatures play a key role in geochemical processes and in applications of supercritical water in waste and biomass treatment, for which salt management is crucial for performance. A major question in predicting salt behavior in such processes is how different salts affect the phase equilibria. Herein, molecular dynamics (MD) simulations are used to investigate molecular‐scale structures of solutions of sodium and/or potassium sulfate, which show contrasting macroscopic behavior. Solutions of Na?SO4 exhibit a tendency towards forming large ionic clusters with increasing temperature, whereas solutions of K?SO4 show significantly less clustering under equivalent conditions. In mixed systems (NaxK2?xSO4), cluster formation is dramatically reduced with decreasing Na/(K+Na) ratio; this indicates a structure‐breaking role of K. MD results allow these phenomena to be related to the characteristics of electrostatic interactions between K+ and SO42?, compared with the analogous Na+?SO42? interactions. The results suggest a mechanism underlying the experimentally observed increasing solubility in ternary mixtures of solutions of Na?K?SO4. Specifically, the propensity of sodium to associate with sulfate, versus that of potassium to break up the sodium–sulfate clusters, may affect the contrasting behavior of these salts. Thus, mutual salting‐in in ternary hydrothermal solutions of Na?K?SO4 reflects the opposing, but complementary, natures of Na?SO4 versus K?SO4 interactions. The results also provide clues towards the reported liquid immiscibility in this ternary system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号