首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71346篇
  免费   15112篇
  国内免费   5999篇
化学   66240篇
晶体学   813篇
力学   2903篇
综合类   363篇
数学   6375篇
物理学   15763篇
  2024年   70篇
  2023年   744篇
  2022年   873篇
  2021年   1385篇
  2020年   2651篇
  2019年   3776篇
  2018年   2148篇
  2017年   1807篇
  2016年   4871篇
  2015年   4967篇
  2014年   5310篇
  2013年   6532篇
  2012年   6219篇
  2011年   5637篇
  2010年   5144篇
  2009年   4845篇
  2008年   4627篇
  2007年   3807篇
  2006年   3554篇
  2005年   3366篇
  2004年   2777篇
  2003年   2496篇
  2002年   3279篇
  2001年   2284篇
  2000年   2086篇
  1999年   1218篇
  1998年   699篇
  1997年   655篇
  1996年   678篇
  1995年   565篇
  1994年   480篇
  1993年   388篇
  1992年   387篇
  1991年   361篇
  1990年   289篇
  1989年   255篇
  1988年   196篇
  1987年   142篇
  1986年   161篇
  1985年   141篇
  1984年   98篇
  1983年   73篇
  1982年   53篇
  1981年   55篇
  1980年   39篇
  1979年   25篇
  1978年   25篇
  1977年   25篇
  1976年   23篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 244 毫秒
71.
Device grade quantum dots (QDs) require QDs ensembles to retain their original superior optical properties as in solution. QDs with thick shells are proven effective in suppressing the inter-dot interaction and preserving the emission properties for QDs solids. However, lattice strain–induced defects may form as the shell grows thicker, resulting in a notable photoluminescence quenching. Herein, a well-type CdxZn1−xS/CdSe/CdyZn1−yS QDs is proposed, where ternary alloys CdZnS are adopted to match the lattice parameter of intermediate CdSe by separately adjusting the x and y parameters. The resultant thick-shell Cd0.5Zn0.5S/CdSe/Cd0.73Zn0.27S QDs reveal nonblinking properties with a high PL QY of 99% in solution and 87% in film. The optimized quantum dot light-emitting diodes (QLEDs) exhibit a luminance of 31547.5 cd m−2 at the external quantum efficiency maximum of 21.2% under a bias of 4.0 V. The shell thickness shows great impact on the degradation of the devices. The T50 lifetime of the QLEDs with 11.2 nm QDs reaches 251 493 h, which is much higher than that of 6.5 and 8.4 nm QDs counterparts. The performances of the well-type thick-shell QLEDs are comparable to state-of-the-art devices, suggesting that this type of QDs is a promising candidate for efficient optoelectronic devices.  相似文献   
72.
New thiazole derivatives were synthesized and fully characterized, then coordinated with PtCl4 salt. Also, the newly synthesized Pt(IV) complexes were investigated analytically (elemental and thermogravimetric analyses), spectrally (infrared, UV–visible, mass, 1H NMR, 13C NMR, X‐ray diffraction) as well as theoretically (kinetics, modeling and docking). The data extracted led to the establishment of the best chemical and structural forms. Octahedral geometry was the only formula proposed for all complexes, which is favorable for d6 systems. The molecular ion peaks from mass spectral analysis coincide with all analytical data, confirming the molecular formula proposed. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) allowed discrimination of features between crystalline particles and other amorphous morphology. By applying Gaussian09 as well as HyperChem 8.2 programs, the best structural forms were obtained, as well as computed significant parameters. Computed parameters such as softness, hardness, surface area and reactivity led us towards application in two opposing pathways: tumor inhibition and oxidation activation. The catalytic oxidation for CO was conducted over PtO2, which was yielded from calcination of the most reactive complex. The success of catalytic role for synthesized PtO2 was due to its particulate size and surface morphology, which were estimated from XRD patterns and SEM images, respectively. The antitumor activity was tested versus HCT‐116 and HepG‐2 cell lines. Mild toxicity was recorded for two of the derivatives and their corresponding complexes. This degree of toxicity is more favorable in most cases, due to exclusion of serious side effects, which is coherently attached with known antitumor drugs.  相似文献   
73.
74.
The tetramer destabilization of transthyretin into monomers and its fibrillation are phenomena leading to amyloid deposition. Heparan sulfate proteoglycan (HSPG) has been found in all amyloid deposits. A chromatographic approach was developed to compare binding parameters between wild‐type transthyretin (wtTTR) and an amyloidogenic transthyretin (sTTR). Results showed a greater affinity of sTTR for HSPG at pH 7.4 compared with wtTTR owing to the monomeric form of sTTR. Analysis of the thermodynamic parameters showed that van der Waals interactions were involved at the complex interface for both transthyretin forms. For sTTR, results from the plot representing the number of protons exchanged vs pH showed that the binding mechanism was pH‐dependent with a critical value at a pH 6.5. This observation was due to the protonation of a histidine residue as an imidazolium cation, which was not accessible when TTR was in its tetrameric structure. At pH >6.5, dehydration at the binding interface and several contacts between nonpolar groups of sTTR and HSPG were also coupled to binding for an optimal hydrogen‐bond network. At pH <6.5, the protonation of the His residue from sTTR monomer when pH decreased broke the hydrogen‐bond network, leading to its destabilization and thus producing slight conformational changes in the sTTR monomer structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
75.
The first examples of the catalytic asymmetric 1,3‐dipolar cycloaddition of azomethine ylides with acyclic activated 1,3‐dienes (and 1,3‐enynes) are described. Under copper catalysis, a selective cycloaddition at the terminal γ,δ‐C?C bond is observed. In addition, depending on the ligand used, either the exo or the endo adduct can be obtained with high selectivity. Under appropriate reaction conditions, the acyclic 1,6‐addition product is detected, suggesting a stepwise mechanism. The resulting C4‐alkenyl‐substituted pyrrolidines are suitable substrates for further access to polycyclic systems, as highlighted by the preparation of hexahydrochromeno[4,3‐b]pyrrole and the tetracyclic core of the alkaloid gracilamine.  相似文献   
76.
Metal‐based catalysts and initiators have played a pivotal role in the ring‐opening polymerization (ROP) of cyclic esters, thanks to their high activity and remarkable ability to control precisely the architectures of the resulting polyesters in terms of molar mass, dispersity, microstructure, or tacticity. Today, after two decades of extensive research, the field is slowly reaching maturity. However, several challenges remain, while original concepts have emerged around new types or new applications of catalysis. This Review is not intended to comprehensively cover all of these aspects. Rather, it provides a personal overview of the very recent progress achieved in some selected, important aspects of ROP catalysis—stereocontrol and switchable catalysis. Hence, the first part addresses the development of new metal‐based catalysts for the isoselective ROP of racemic lactide towards stereoblock copolymers, and the use of syndioselective ROP metal catalysts to control the monomer sequence in copolymers. A second part covers the development of ROP catalysts—primarily metal‐based catalysts, but also organocatalysts—that can be externally regulated by the use of chemical or photo stimuli to switch them between two states with different catalytic abilities. Current challenges and opportunities are highlighted.  相似文献   
77.
78.
Tunneled metal oxides such as α-Mn8O16 (hollandite) have proven to be compelling candidates for charge-storage materials in high-density batteries. In particular, the tunnels can support one-dimensional chains of K+ ions (which act as structure-stabilizing dopants) and H2O molecules, as these chains are favored by strong H-bonds and electrostatic interactions. In this work, we examine the role of water molecules in enhancing the stability of K+-doped α-Mn8O16 (cryptomelane). The combined experimental and theoretical analyses show that for high enough concentrations of water and tunnel-ions, H2O displaces K+ ions from their natural binding sites. This displacement becomes energetically favorable due to the formation of K2+ dimers, thereby modifying the stoichiometric charge of the system. These findings have potentially significant technological implications for the consideration of cryptomelane as a Li+/Na+ battery electrode. Our work establishes the functional role of water in altering the energetics and structural properties of cryptomelane, an observation that has frequently been overlooked in previous studies.

Water displaces potassium ions and initiates the formation of a homonuclear dimer ion (K2+) in the tunnels of hollandite.  相似文献   
79.
Yuan  Cheng  Qin  Yi  Zhang  Mi  Zhang  Huifen  Jiao  Shiyun  Li  Baocai 《Chromatographia》2015,78(19):1283-1292

To establish a new method of testing and evaluating the quality of refined montan wax (RMW), digital color and GC fingerprint technology were introduced and applied. CIE Lab color mode was used to digitize the exterior colors of RMW, and the score obtained through a fitting function was also used to reflect its quality. It is shown that they were in complete accord with the human visual perception trend. The GC fingerprint was used to characterize the internal chemical information of RMW, and the composition of its internal features was reflected through the relative retention time (RRT) and relative peak area (RPA) values. It is shown that there was a high degree of similarity between the fingerprints, while certain differences also existed. This can be used to implement effective application of RMW to aspects such as quality control, adulteration identification, and origin attributions.

  相似文献   
80.
Here, we report a new strategy for rapid synthesis of branched peptide by side-chain hydrazide ligation at Asn. The hydrazide was converted to thioester at Asn side chain by NaNO2 and thiol reagent, and sequential ligation with an N-terminus Cys-peptide efficiently afforded the branched peptide. A branched cyclic peptide was successfully synthesized by side-chain ligation with a two-Cys-peptide and formation of a disulfide bond. This approach provides a new way for expeditious synthesis of branched peptides and facilitates the design of neopeptides as functional bio-mimics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号