首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   17篇
  国内免费   5篇
化学   354篇
晶体学   7篇
力学   20篇
数学   89篇
物理学   117篇
  2023年   2篇
  2022年   3篇
  2021年   15篇
  2020年   12篇
  2019年   11篇
  2018年   3篇
  2017年   5篇
  2016年   21篇
  2015年   13篇
  2014年   11篇
  2013年   38篇
  2012年   26篇
  2011年   46篇
  2010年   28篇
  2009年   21篇
  2008年   37篇
  2007年   40篇
  2006年   39篇
  2005年   30篇
  2004年   22篇
  2003年   21篇
  2002年   21篇
  2001年   18篇
  2000年   9篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   7篇
  1992年   9篇
  1991年   6篇
  1990年   4篇
  1989年   1篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1976年   4篇
  1975年   3篇
排序方式: 共有587条查询结果,搜索用时 31 毫秒
581.
The dynamics of phase separation in the presence of a diblock copolymer have been studied using ternary and quaternary models of spinodal decomposition. The ternary model treats the block copolymer as a third component that is compatible with each of the mutually incompatible homopolymers. The quaternary model treats the block copolymer as a pair of specially constrained homopolymers. Both models predict core-shell morphologies with the copolymer concentrated at the interface. Both models predict larger domain sizes and less sharp phase boundaries in the early stages of spinodal decomposition. In the late stages, domain sizes are largest for the system of homopolymers without copolymer and smallest when a system containing copolymer is modeled as a quaternary blend. The scaling exponent observed for the quaternary model was s = 0.25 ± 0.02 compared to s ≅ 0.3 for the homopolymers without copolymer and for the ternary model. The quaternary model predicts internal phase separation within a pure diblock copolymer, whenever the corresponding homopolymers are sufficiently incompatible. © 1996 John Wiley & Sons, Inc.  相似文献   
582.
Four reverse osmosis (RO) composite membranes, in which thin-film active layers were polyphenyl esters, were prepared by interfacial polymerization of a series of bisphenol monomers and trimesoyl chloride (TMC). An atomic force microscope (AFM) was used to investigate the surface morphology and RO experiments were carried out to measure the rejection and flux characteristics of the membranes. Correlations between the inherent chemical nature of bisphenols possessing structural variations in the middle of phenyl rings and the surface morphology/RO performance of the membranes were studied. Polarity of the connectors between two phenyl rings of bisphenols played an important role in determining the surface morphology and RO performance. Nonpolar bisphenol gave a morphology of uniform, distinct nodular corrugation and a superior RO rejection but a relatively low flux, while the polar one resulted in an irregular, ambiguous nodule structure and a high flux. The size of the bisphenol connectors was also found to be important; the smaller one was more favorable for the formation of membrane with better salt rejection, while the larger one contributed to higher flux. © 1996 John Wiley & Sons, Inc.  相似文献   
583.
A gradient squared free energy functional of the Landau-Ginzburg type is combined with Flory-Huggins theory to calculate minimum domain sizes, concentration profiles and interfacial tensions in ternary polymer blends. The dynamic equations governing spinodal decomposition are linearized to show that the minimum size for growth is identical to the thermodynamic minimum on phase volume. It is shown that unseparated, third components are enriched at the interface, reduce interfacial tension, increase stability and increase the minimum domain sizes. Enrichment of the third component at the interface causes concentrations at the major components to lie outside their binodal limits at a distance from the interface. Although the effects are most pronounced when the third component is a compatibilizer, the general phenomena remain true even when the third component is relatively incompatible. Generalizations to blends of N components are presented, and a robust method for calculating multicomponent phase diagrams is described.  相似文献   
584.
The photoirradiation of trans‐ and cis‐poly(dimethylsilylenephenylenevinylene)s gave cis‐rich mixtures at equilibrium states. The degree of the photoisomerization could be exactly evaluated by comparing the UV spectra of the photoirradiated solutions with those of the trans and cis polymers. The geometric configuration of the trans and cis polymers was thermally stable and hardly changed even though they were heated. The trans and cis polymers exhibited different emission properties; e.g., trans polymer: λmax = 400 nm, quantum yield = 3.4×10–3; cis polymer: λmax = 380 nm, quantum yield = 1.5×10–3.  相似文献   
585.
Oxidative coupling reaction of 1‐hexyl–3,4‐dimethylpyrrole affords a conjugated conducting poly(1‐hexyl‐3,4‐dimethyl‐2,5‐pyrrolylene) (PHDP), which is completely soluble in common organic solvents. The luminescence of PHDP is comparable to that of poly(N‐vinylcarbazole) (PVK), which has been widely used in electroluminescence devices. The quantum efficiency of PHDP is 2.5 times higher than that of PVK. A rationalization is presented relating the conductivity of PHDP to its polymer structure.  相似文献   
586.
A new class of near-infrared (NIR) fluorophores, PAI , is obtained by consecutive C−N/C−C bond formation between diphenylamines and 9,10-dibromoperylenecarboximide. Owing to the rigid structure, extended π-conjugation and pronounced push-pull substitution, these fluorophores show emission maxima up to 804 nm and large Stokes shifts. The extraordinarily high fluorescence quantum yields from 47 % to 70 % are attributed to chloro substitution in the bay positions of the perylene core. These characteristics, together with high photostability, qualify them as useful NIR emitters for applications as biomarkers and security inks.  相似文献   
587.
Covalent organic frameworks have recently shown high potential for photocatalytic hydrogen production. However, their structure-property-activity relationship has not been sufficiently explored to identify a research direction for structural design. Herein, we report the design and synthesis of four benzotrithiophene (BTT)-based covalent organic frameworks (COFs) with different conjugations of building units, and their photocatalytic activity for hydrogen production. All four BTT-COFs had slipped parallel stacking patterns with high crystallinity and specific surface areas. The change in the degree of conjugation was found to rationally tune the rate of photocatalytic hydrogen evolution. Based on the experimental and calculation results, the tunable photocatalytic performance could be mainly attributed to the electron affinity and charge trapping of the electron accepting units. This study provides important insights for designing covalent organic frameworks for efficient photocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号