首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   29篇
  国内免费   6篇
化学   369篇
晶体学   1篇
力学   37篇
数学   205篇
物理学   101篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   12篇
  2018年   12篇
  2017年   13篇
  2016年   17篇
  2015年   24篇
  2014年   31篇
  2013年   45篇
  2012年   54篇
  2011年   55篇
  2010年   34篇
  2009年   33篇
  2008年   28篇
  2007年   50篇
  2006年   45篇
  2005年   35篇
  2004年   46篇
  2003年   29篇
  2002年   24篇
  2001年   9篇
  2000年   8篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1996年   9篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   11篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1932年   1篇
排序方式: 共有713条查询结果,搜索用时 15 毫秒
91.
92.
Let T be a tree. We show that the null space of the adjacency matrix of T has relevant information about the structure of T. We introduce the Null Decomposition of trees, which is a decomposition into two different types of trees: N-trees and S-trees. N-trees are the trees that have a unique maximum (perfect) matching. S-trees are the trees with a unique maximum independent set. We obtain formulas for the independence number and the matching number of a tree using this decomposition. We also show how the number of maximum matchings and the number of maximum independent sets in a tree are related to its null decomposition.  相似文献   
93.
For the polynomial differential system $\dot{x}=-y$, $\dot{y}=x +Q_n(x,y)$, where $Q_n(x,y)$ is a homogeneous polynomial of degree $n$ there are the following two conjectures done in 1999. (1) Is it true that the previous system for $n \ge 2$ has a center at the origin if and only if its vector field is symmetric about one of the coordinate axes? (2) Is it true that the origin is an isochronous center of the previous system with the exception of the linear center only if the system has even degree? We give a step forward in the direction of proving both conjectures for all $n$ even. More precisely, we prove both conjectures in the case $n = 4$ and for $n\ge 6$ even under the assumption that if the system has a center or an isochronous center at the origin, then it is symmetric with respect to one of the coordinate axes, or it has a local analytic first integral which is continuous in the parameters of the system in a neighborhood of zero in the parameters space. The case of $n$ odd was studied in [8].  相似文献   
94.
What do the three names in the title have in common? The purpose of this paper is to relate them in a new and, hopefully, interesting way. Starting with the Fibonacci numeration system — also known as Zeckendorff's system — we will pose ourselves the problem of extending it in a natural way to represent all real numbers in (0,1). We will see that this natural extension leads to what is known as the ?-system restricted to the unit interval. The resulting complete system of numeration replicates the uniqueness of the binary system which, in our opinion, is responsible for the possibility of defining the Van der Corput sequence in (0,1), a very special sequence which besides being uniformly distributed has one of the lowest discrepancy, a measure of the goodness of the uniformity.Lastly, combining the Fibonacci system and the binary in a very special way we will obtain a singular function, more specifically, the inverse of one of the family of Riesz-Nágy.  相似文献   
95.
A code C{{\mathcal C}} is \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-additive if the set of coordinates can be partitioned into two subsets X and Y such that the punctured code of C{{\mathcal C}} by deleting the coordinates outside X (respectively, Y) is a binary linear code (respectively, a quaternary linear code). The corresponding binary codes of \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-additive codes under an extended Gray map are called \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear codes. In this paper, the invariants for \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear codes, the rank and dimension of the kernel, are studied. Specifically, given the algebraic parameters of \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear codes, the possible values of these two invariants, giving lower and upper bounds, are established. For each possible rank r between these bounds, the construction of a \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear code with rank r is given. Equivalently, for each possible dimension of the kernel k, the construction of a \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear code with dimension of the kernel k is given. Finally, the bounds on the rank, once the kernel dimension is fixed, are established and the construction of a \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear code for each possible pair (r, k) is given.  相似文献   
96.
97.
We characterize all the quadratic polynomial differential systems having a polynomial inverse integrating factor and provide explicit normal forms for such systems and for their associated first integrals. We also prove that these families of quadratic systems have no limit cycles.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号