首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1759篇
  免费   92篇
  国内免费   5篇
化学   1531篇
晶体学   13篇
力学   33篇
数学   133篇
物理学   146篇
  2023年   25篇
  2022年   23篇
  2021年   62篇
  2020年   66篇
  2019年   60篇
  2018年   40篇
  2017年   48篇
  2016年   86篇
  2015年   82篇
  2014年   87篇
  2013年   123篇
  2012年   160篇
  2011年   159篇
  2010年   109篇
  2009年   96篇
  2008年   123篇
  2007年   118篇
  2006年   83篇
  2005年   72篇
  2004年   48篇
  2003年   44篇
  2002年   37篇
  2001年   14篇
  2000年   8篇
  1999年   11篇
  1998年   10篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   8篇
  1993年   3篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1965年   1篇
  1959年   1篇
  1955年   1篇
排序方式: 共有1856条查询结果,搜索用时 31 毫秒
91.
Branched chain amino acids (BCAAs), alanine and glutamine are determined in human plasma by capillary electrophoresis with contactless conductivity detection (CE/C4D). The baseline separation of five amino acids from other plasma components is achieved on the short capillary effective length of 18 cm in 3.2 mol/L acetic acid with addition of 13% v/v methanol as background electrolyte. Migration times range from 2.01 min for valine to 2.84 min for glutamine, and LODs for untreated plasma are in the interval 0.7–0.9 μmol/L. Sample treatment is based on the addition of acetonitrile to only 15 μL of plasma and supernatant is directly subjected to CE/C4D. Circulating amino acids are measured in patients with pancreatic cancer and cancer cachexia during oral glucose tolerance test. It is shown that patients with pancreatic cancer and cancer cachexia syndrome exhibit low basal circulating BCAAs and glutamine levels and loss of their insulin-dependent suppression.  相似文献   
92.
Thermal properties and structure of bulk glasses of (As2S3)1?x(Sb4S4)x system (x varies from 0 to 60 mol%) were studied by differential scanning calorimetry and Raman spectroscopy. It was found that with increasing Sb content the glasses can be sorted out to the three groups. The structure of glasses with x ≤ 10 is build-up mainly from AsS3/2 pyramidal units and the well-known crystallization resistance of As2S3 can explain the reluctance of these undercooled liquids against crystallization. In glasses with a higher content of antimony, i.e., 10 < x ≤ 30 mol%, the vibration characteristics of As4S4 clusters appear. Undercooled melts of these glasses crystallize forming both β-As4S4 and high-temperature phases of Sb2S3. Structure of glasses with the highest antimony content (x > 30 mol%) is based on SbS3/2 structural units significantly lowering stability of their undercooled melts from which only Sb2S3 crystallizes.  相似文献   
93.
94.
New organosilica precursors containing two triethoxysilyl groups suitable for the organosilica material formation through the sol‐gel process were designed and synthesised. These precursors display alkyne or azide groups for attaching targeted functional groups by copper‐catalysed azide–alkyne cycloaddition (CuAAC) and can be used for the preparation of functional organosilicas following two strategies: 1) the functional group is first appended by CuAAC under anhydrous conditions, then the functional material is prepared by the sol‐gel process; 2) the precursor is first subjected to the sol‐gel process, producing porous, clickable bridged silsesquioxanes or periodic mesoporous organosilicas (PMOs), then the desired functional groups are attached by means of CuAAC. Herein, we show the feasibility of both approaches. A series of bridged bis(triethoxysilane)s with different pending organic moieties was prepared, demonstrating the compatibility of the first approach with many functional groups. In particular, we demonstrate that organic functional molecules bearing only one derivatisation site can be used to produce bridged organosilanes and bridged silsesquioxanes. In the second approach, clickable PMOs and porous bridged silsesquioxanes were prepared from the alkyne‐ or azide‐containing precursors, and thereafter, functionalised with complementary model azide‐ or alkyne‐containing molecules. These results confirmed the potential of this approach as a general methodology for preparing functional organosilicas with high loadings of functional groups. Both approaches give rise to a wide range of new functional organosilica materials.  相似文献   
95.
Hydrolysis of germanosilicate zeolites with the IWW structure shows two different outcomes depending on the composition of the starting materials. Ge‐rich IWW (Si/Ge=3.1) is disassembled into a layered material (IPC‐5P), which can be reassembled into an almost pure silica IWW on treatment with diethoxydimethylsilane. Ge‐poor IWW (Si/Ge=6.4) is not completely disassembled on hydrolysis, but retains some 3D connectivity. This structure can be reassembled into IWW by incorporation of Al to fill the defects left when the Ge is removed.  相似文献   
96.
Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure‐directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8‐rings all the way to extra‐large pores consisting of 14‐rings.  相似文献   
97.
The combination of the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction with sol–gel processing enables the versatile preparation of sol–gel materials under different shapes with targeted functionalities through a diversity-oriented approach. In this account, the development of the CuAAC reaction under anhydrous conditions for the synthesis of sol–gel precursors and for the assembling of magnetic nanoparticles on self-assembled monolayers is related, as well as the use of the classical CuAAC methodologies for the functionalization of mesoporous silica nanoparticles and microdots arrays. Coupling CuAAC and Sol–Gel will result in simplified preparations of multifunctional materials with controlled morphologies.  相似文献   
98.
In this work, we compare labeling by two negatively charged fluorescent labels, 8-aminopyrene-1,3,6-trisulfonic acid (APTS) and 8-(2-hydrazino-2-oxoethoxy)pyrene-1,3,6-trisulfonic acid (Cascade Blue hydrazide [CBH]). Effectiveness of the labeling chemistries were investigated by 4-hydroxybenzaldehyde and maltoheptaose followed by LC/UV-MS and CE/LIF analysis, respectively. The reaction yield of APTS labeling was determined to be only ∼10%. This is due to reduction of almost 90% of the analyte by sodium cyanoborohydride to alcohol, which cannot be further labeled via reductive amination. However, the CBH labeling provides ∼90% reaction yield based on the LC/UV-MS measurements. The significantly higher labeling yield was also confirmed by CE/LIF measurements. Finally, the more effective hydrazone formation technique of CBH was characterized and applied for N-linked glycan analysis by CE/LIF.  相似文献   
99.
A mixed-valence {MnII3MnIIIFeII2FeIII2} cyanide-bridged molecular cube hosting a caesium cation, Cs⊂{Mn4Fe4}, was synthesized and structurally characterized by X-ray diffraction. Cyclic-voltammetry measurements show that its electronic state can be switched between five different redox states, which results in a remarkable electrochromic effect. Magnetic measurements on fresh samples point to the occurrence of a spin-state change near room temperature, which could be ascribed to a metal-to-metal electron transfer converting the {FeII−CN−MnIII} pair into a {FeIII−CN−MnII} pair. This feature was only previously observed in the polymeric MnFe Prussian-blue analogues (PBAs). Moreover, this novel switchable molecule proved to be soluble and stable in organic solvents, paving the way for its integration into advanced materials.  相似文献   
100.
There are 11 different varieties of Beta vulgaris L. that are used in the food industry, including sugar beets, beetroots, Swiss chard, and fodder beets. The typical red coloration of their tissues is caused by the indole-derived glycosides known as betalains that were analyzed in hypocotyl extracts by UV/Vis spectrophotometry to determine the content of betacyanins (betanin) and of betaxanthins (vulgaxanthin I) as constituents of the total betalain content. Fields of beet crops use to be also infested by wild beets, hybrids related to B. vulgaris subsp. maritima or B. macrocarpa Guss., which significantly decrease the quality and quantity of sugar beet yield; additionally, these plants produce betalains at an early stage. All tested B. vulgaris varieties could be distinguished from weed beets according to betacyanins, betaxanthins or total betalain content. The highest values of betacyanins were found in beetroots ‘Monorubra’ (9.69 mg/100 mL) and ‘Libero’ (8.42 mg/100 mL). Other beet varieties contained less betacyanins: Sugar beet ‘Labonita’ 0.11 mg/100 mL; Swiss chard ‘Lucullus,’ 0.09 mg/100 mL; fodder beet ‘Monro’ 0.15 mg/100 mL. In contrast with weed beets and beetroots, these varieties have a ratio of betacyanins to betaxanthins under 1.0, but the betaxanthin content was higher in beetcrops than in wild beet and can be used as an alternative to non-red varieties. Stability tests of selected varieties showed that storage at 22 °C for 6 h, or at 7 °C for 24 h, did not significantly reduce the betalain content in the samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号