首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   24篇
  国内免费   27篇
化学   166篇
晶体学   8篇
力学   5篇
综合类   3篇
数学   42篇
物理学   56篇
  2023年   11篇
  2022年   12篇
  2021年   5篇
  2020年   13篇
  2019年   18篇
  2018年   14篇
  2017年   7篇
  2016年   17篇
  2015年   13篇
  2014年   10篇
  2013年   19篇
  2012年   19篇
  2011年   11篇
  2010年   15篇
  2009年   15篇
  2008年   14篇
  2007年   13篇
  2006年   6篇
  2005年   11篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1990年   2篇
排序方式: 共有280条查询结果,搜索用时 296 毫秒
271.
With increasing ecological and environmental concerns, tin (Sn)-based perovskite light-emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low-cost solution-processed fabrication. Nonetheless, their electroluminescence (EL) performance still lags behind that of lead (Pb)-based PeLEDs due to the fast crystallization rate of Sn-based perovskite films and undesired oxidation from Sn2+ to Sn4+, leading to poor film morphology and coverage, as well as high density defects. Here, we propose a ligand engineering strategy to construct high-quality phenethylammonium tin iodide (PEA2SnI4) perovskite films by using L-glutathione reduced (GSH) as surface ligands toward efficient pure red PEA2SnI4-based PeLEDs. We show that the hydrogen-bond and coordinate interactions between GSH and PEA2SnI4 effectively reduce the crystallization rate of the perovskites and suppress the oxidation of Sn2+ and formation of defects. The improved pure red perovskite films not only show excellent uniformity, density, and coverage but also exhibit enhanced optical properties and stability. Finally, state-of-the-art pure red PeLEDs achieve a record external quantum efficiency of 9.32 % in the field of PEA2SnI4-based devices. This work demonstrates that ligand engineering represents a feasible route to enhance the EL performance of Sn-based PeLEDs.  相似文献   
272.
Jin MJ  Sarkar SM  Lee DH  Qiu H 《Organic letters》2008,10(6):1235-1237
Chiral amino thioacetate ligands were prepared from the corresponding amino alcohols and used as catalysts for enantioselective aryl transfer reaction. The amino thioacetates were remarkably superior to the corresponding amino alcohols. Low catalyst loadings of only 1-2.5 mol % were sufficient to achieve excellent enantioselectivity as well as high conversion in short reaction time. The results reveal that the thioacetoxy moiety of the amino thioacetates has a surprisingly beneficial effect in enhancing the asymmetric induction.  相似文献   
273.
We have investigated the effect of trimethyl aluminum (TMA) and water (H2O) half‐cycle treatments on HF‐treated, and O3‐oxidized GaN surfaces at 300 °C. The in‐situ X‐ray photoelectron spectroscopy results indicate no significant re‐growth of Ga–O–N or self‐cleaning on HF‐treated and O3‐oxidized GaN substrates with exposure to water and TMA. This result is different from the self‐cleaning effect of Ga2O3 seen on sulfur‐treated GaAs or InGaAs substrates. O3 causes aggressive oxidation of GaN substrate and direct O–N bonding compared to H2O. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
274.
Y(3)Al(5)O(12):Ce phosphors have been prepared and used as an effective scattering layer on top of a transparent layer of nanocrystalline TiO(2) for dye sensitized solar cells (DSSCs). The Y(3)Al(5)O(12):Ce scattering layer increases the photocurrent of DSSCs due to the enhanced light harvesting mainly via the improved light absorption and scattering. Under one sun illumination (AM 1.5G, 100 mW cm(-2)), a high efficiency of 7.91% was achieved for the cell with a Y(3)Al(5)O(12):Ce scattering layer, which is an increase of 13.5% compared to the cell without a scattering layer (6.97%).  相似文献   
275.
Huili Liu 《Journal of Geometry》1999,64(1-2):141-149
We give the classification of the translation surfaces with constant mean curvature or constant Gauss curvature in 3-dimensional Euclidean space E3 and 3-dimensional Minkowski space E 1 3 .The author is supported by the EDU. COMM. of CHINA, the NSF of Liaoning and the Northeastern University.Dedicated to Professor Udo Simon on the occation of his sixtieth birthday  相似文献   
276.
Regenerated cellulose membranes have been traditionally manufactured using the viscose or the copper‐ammonia process. Today, membranes made by this process are still used in many fields such as dialysis. However, there are some serious environmental problems inherent in the existing processing routes. The new N‐methylmorpholine‐N‐oxide (NMMO) process can overcome these disadvantages and provides membranes with improved mechanical properties. In the present work, cellulose membranes were successfully prepared from NMMO solution under various conditions. It was found that the cellulose concentration is a decisive factor in controlling the membrane permeation properties. For a given coagulation system, higher cellulose concentration leads to membranes with greater rejection of bovine serum albumin (BSA) and lower pure water flux. It was also found that both the degree of polymerization (DP) and the type of cellulose pulp have great effect on the morphology and permeation properties of the membrane support layer. With increasing NMMO concentration and temperature of the coagulation bath, the pure water flux increases while the rejection of BSA decreases; a result of the larger mean pore size formed during coagulation.  相似文献   
277.
278.
The ability to harness charges and spins for control of organic excitonic states is critical in developing high-performance organic luminophores and optoelectronic devices. Here we report a facile strategy to efficiently manipulate the electronic energy states of various organic phosphors by coupling them with inorganic lanthanide nanocrystals. We show that the metallic atoms exposed on the nanocrystal surface can introduce strong coupling effects to 9-(4-ethoxy-6-phenyl-1,3,5-triazin-2-yl)-9H-carbazole (OCzT) and some organic chromophores with carbazole functional groups when the organics are approaching the nanocrystals. This unconventional organic–inorganic hybridization enables a nearly 100 % conversion of the singlet excitation to fast charge transfer luminescence that does not exist in pristine organics, which broadens the utility of organic phosphors in hybrid systems.  相似文献   
279.
280.
Aqueous zinc metal batteries hold great promise for large-scale energy storage because of their high safety, rich material resources and low cost. However, the freeze of aqueous electrolytes hinders low-temperature operation of the batteries. Here, aqueous localized anion-cation aggregated electrolytes composed of Zn(BF4)2 as the salt and tetrahydrofuran (THF) as the diluent, are developed to improve the low-temperature performance of the Zn anode. THF promotes the inclusion of BF4 in the solvation sheath of Zn2+, facilitating the formation of ZnF2-rich solid-electrolyte-interphase. THF also affects the hydrogen bonding between neighboring H2O molecules, effectively lowering the freezing point. Therefore, the full cells of Zn||polyaniline (PANI) exhibit an ultralong cycle life of 8000 cycles with an average Coulombic efficiency of 99.99 % at −40 °C. Impressively, the pouch cells display a high capacity retention of 86.2 % after 500 cycles at −40 °C, which demonstrates the great prospect of such electrolytes in cold regions. This work provides new insights for the design of low-temperature aqueous electrolytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号