首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39261篇
  免费   9296篇
  国内免费   1459篇
化学   43415篇
晶体学   363篇
力学   580篇
综合类   2篇
数学   2292篇
物理学   3364篇
  2023年   37篇
  2022年   68篇
  2021年   243篇
  2020年   1290篇
  2019年   2638篇
  2018年   1065篇
  2017年   694篇
  2016年   3438篇
  2015年   3601篇
  2014年   3534篇
  2013年   4232篇
  2012年   3193篇
  2011年   2464篇
  2010年   3007篇
  2009年   2955篇
  2008年   2591篇
  2007年   1909篇
  2006年   1622篇
  2005年   1839篇
  2004年   1571篇
  2003年   1460篇
  2002年   2106篇
  2001年   1453篇
  2000年   1357篇
  1999年   405篇
  1998年   82篇
  1997年   93篇
  1996年   94篇
  1995年   59篇
  1994年   66篇
  1993年   90篇
  1992年   72篇
  1991年   57篇
  1990年   52篇
  1989年   63篇
  1988年   42篇
  1987年   39篇
  1986年   38篇
  1985年   47篇
  1984年   37篇
  1983年   25篇
  1982年   23篇
  1981年   36篇
  1980年   17篇
  1979年   25篇
  1978年   24篇
  1977年   22篇
  1976年   19篇
  1975年   17篇
  1974年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
For approximate wave functions, we prove the theorem that there is a one‐to‐one correspondence between the constraints of normalization and of the Fermi–Coulomb and Coulomb hole charge sum rules at each electron position. This correspondence is surprising in light of the fact that normalization depends on the probability of finding an electron at some position. In contrast, the Fermi–Coulomb hole sum rule depends on the probability of two electrons staying apart because of correlations due to the Pauli exclusion principle and Coulomb repulsion, while the Coulomb hole sum rule depends on Coulomb repulsion. We demonstrate the theorem for the ground state of the He atom by the use of two different approximate wave functions that are functionals rather than functions. The first of these wave function functionals is constructed to satisfy the constraint of normalization, and the second that of the Coulomb hole sum rule for each electron position. Each is then shown to satisfy the other corresponding sum rule. The significance of the theorem for the construction of approximate “exchange‐correlation” and “correlation” energy functionals of density functional theory is also discussed. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
102.
New photocrosslinkable maleimide copolymers have been synthesized by the attachment of a tricyanopyrrolidene‐based chromophore. The 2‐(3‐cyano‐4‐(2‐{4‐[hexyl‐(6‐hydroxy‐hexyl)‐amino]‐phenyl}‐vinyl)‐5‐oxo‐1‐{4‐[4‐(3‐oxo‐3‐phenyl‐propenyl)‐ phenoxy]‐butyl}‐1,5‐dihydro‐pyrrol‐2‐ylidene)‐malononitrile chromophore exhibits nonlinear optical activity and contains a chalcone moiety that is sensitive to UV light (λ = 330–360 nm) for crosslink formation. The maleimide monomers have also been functionalized with chalcone moieties. The resultant copolymers exhibit great processability, and one of them shows a maximum electrooptic coefficient of 90 pm/V at 1300 nm. We could control the thermal stability of the electrooptic coefficient with the newly synthesized photoreactive copolymers successfully. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 531–542, 2007  相似文献   
103.
In this work, we propose that retardation in vinyl acetate polymerization rate in the presence of toluene is due to degradative chain transfer. The transfer constant to toluene (Ctrs) determined using the Mayo method is equal to 3.8 × 10?3, which is remarkably similar to the value calculated from the rate data, assuming degradative chain transfer (2.7 × 10?3). Simulations, including chain‐length‐dependent termination, were carried out to compare our degradative chain transfer model with experimental results. The conversion–time profiles showed excellent agreement between experiment and simulation. Good agreement was found for the Mn data as a function of conversion. The experimental and simulation data strongly support the postulate that degradative chain transfer is the dominant kinetic mechanism. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3620–3625, 2007  相似文献   
104.
Differential scanning calorimetry (DSC) does not allow for easy determination of the glass‐transition temperature (Tg) of the polystyrene (PS) block in styrene–butadiene–styrene (SBS) block copolymers. Modulated DSC (MDSC), which deconvolutes the standard DSC signal into reversing and nonreversing signals, was used to determine the (Tg) of both the polybutadiene (PB) and PS blocks in SBS. The Tg of the PB block was sharp, at ?92 °C, but that for the PS blocks was extremely broad, from ?60 to 125 °C with a maximum at 68 °C because of blending with PB. PS blocks were found only to exist in a mixed PS–PB phase. This concurred with the results from dynamic mechanical analysis. Annealing did not allow for a segregation of the PS blocks into a pure phase, but allowed for the segregation of the mixed phase into two mixed phases, one that was PB‐rich and the other that was PS‐rich. It is concluded that three phases coexist in SBS: PB, PB‐rich, and PS‐rich phases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 276–279, 2005  相似文献   
105.
106.
The new phenylpropanoid diglycoside ligusinenoside A ( 1 ), and the two new 8,4′‐oxyneolignan(‘8‐O‐4′‐neolignan’) diglycosides ligusinenosides B ( 2 ) and C ( 3 ), together with nine known compounds, were isolated from the rhizomes of Ligusticum sinensis Oliv. The structures of 1 – 3 were elucidated on the basis of spectroscopic analyses.  相似文献   
107.
108.
This paper proposes a model for the parametric representation of linguistic hedges in Zadeh’s fuzzy logic. In this model each linguistic truth-value, which is generated from a primary term of the linguistic truth variable, is identified by a real number r depending on the primary term. It is shown that the model yields a method of efficiently computing linguistic truth expressions accompanied with a rich algebraic structure of the linguistic truth domain, namely De Morgan algebra. Also, a fuzzy logic based on the parametric representation of linguistic truth-values is introduced.  相似文献   
109.
Poly(3‐hydroxybutyrate) (PHB)/layered double hydroxides (LDHs) nanocomposites were prepared by mixing PHB and poly(ethylene glycol) phosphonates (PEOPAs)‐modified LDH (PMLDH) in chloroform solution. Both X‐ray diffraction data and TEM micrographs of PHB/PMLDH nanocomposites indicate that the PMLDHs are randomly dispersed and exfoliated into the PHB matrix. In this study, the effect of PMLDH on the isothermal crystallization behavior of PHB was investigated using a differential scanning calorimeter (DSC) and polarized optical microscopy. Isothermal crystallization results of PHB/PMLDH nanocomposites show that the addition of 2 wt % PMLDH into PHB induced more heterogeneous nucleation in the crystallization significantly increasing the crystallization rate and reducing their activation energy. By adding more PMLDH into the PHB probably causes more steric hindrance of the diffusion of PHB, reducing the transportation ability of polymer chains during crystallization, thus increasing the activation energy. The correlation among crystallization kinetics, melting behavior and crystalline structure of PHB/PMLDH nanocomposites can also be discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3337–3347, 2006  相似文献   
110.
In this paper, we report that the phase transformation of Ni-B, Ni-P diffusion barriers deposited electrolessly on Cu, for the reason that the Ni-P layer is a more effective diffusion barrier than the Ni-B layer. The Ni3B crystallized was decomposed to Ni and B2O3 above 400 °C and the Ni3P crystallized was decomposed to Ni and P2O5 above 600 °C respectively in Ar atmosphere. Also, the Ni3B was decomposed to Ni and free B above 400 °C and the Ni3P was decomposed to Ni and free P above 600 °C respectively in H2 atmosphere. The decomposed Ni formed a solid solution with Cu. The Cu diffusion occurred above 400 °C for Ni-B layer and above 600 °C for Ni-P layer, respectively. Because the decomposition temperature of Ni-P layer is about 200 °C higher than that of Ni-B layer, the Ni-P layer is a more effective barrier for Cu than the Ni-B layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号