首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2451篇
  免费   172篇
  国内免费   4篇
化学   1597篇
晶体学   5篇
力学   62篇
数学   398篇
物理学   565篇
  2023年   35篇
  2022年   23篇
  2021年   56篇
  2020年   113篇
  2019年   83篇
  2018年   51篇
  2017年   43篇
  2016年   131篇
  2015年   101篇
  2014年   95篇
  2013年   123篇
  2012年   154篇
  2011年   155篇
  2010年   93篇
  2009年   76篇
  2008年   113篇
  2007年   95篇
  2006年   88篇
  2005年   89篇
  2004年   57篇
  2003年   63篇
  2002年   66篇
  2001年   34篇
  2000年   31篇
  1999年   28篇
  1998年   31篇
  1996年   16篇
  1995年   18篇
  1994年   23篇
  1993年   16篇
  1992年   13篇
  1991年   12篇
  1990年   12篇
  1989年   16篇
  1988年   13篇
  1986年   15篇
  1985年   21篇
  1984年   17篇
  1983年   16篇
  1982年   15篇
  1981年   16篇
  1980年   17篇
  1979年   13篇
  1978年   16篇
  1977年   22篇
  1976年   14篇
  1975年   11篇
  1974年   12篇
  1972年   10篇
  1967年   10篇
排序方式: 共有2627条查询结果,搜索用时 62 毫秒
101.
102.
103.
The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses 1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd  相似文献   
104.
Common material models that take into account softening effects due to damage encounter the problem of ill-posed boundary value problems if no regularization is applied. This condition leads to a non-unique solution for the resulting algebraic system and a strong mesh dependence of the numerical results. A possible solution approach to prevent this problem is to apply regularization techniques that take into account the non-local behavior of the damage [1]. For this purpose a field function is used to couple the local damage parameter to a non-local level, in which differences between the local and non-local parameter as well as the gradient of the non-local parameter can be penalized. In contrast, we present a novel approach to regularization in which no field function is needed [2]. Hereto, the regularization is carried out by means of the divergence of the displacements and no additional quantity is necessary since the displacements are already defined on a non-local level. The idea is that with an increasing value of the damage the element's volume will increase as well. This is a result of the softening due to the occurring damage. The increasing volume can be measured by the divergence of the displacements which can be penalized by an additional energy part. The lack of any field function and the regularization by the use of the divergence of the displacements entails several numerical advantages: the computational effort is considerably reduced and the convergence behavior is improved as well. Naturally, the numerical results are mesh independent due to the regularization. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
105.
The in situ Grignard Metalation Method (iGMM) is a straightforward one-pot procedure to quickly produce multigram amounts of Hauser bases R2N-MgBr which are valuable and vastly used metalation reagents and novel electrolytes for magnesium batteries. During addition of bromoethane to a suspension of Mg metal and secondary amine at room temperature in an ethereal solvent, a smooth reaction yields R2N-MgBr under evolution of ethane within a few hours. A Schlenk equilibrium is operative, interconverting the Hauser bases into their solvated homoleptic congeners Mg(NR2)2 and MgBr2 depending on the solvent. Scope and preconditions are studied, and side reactions limiting the yield have been investigated. DOSY NMR experiments and X-ray crystal structures of characteristic examples clarify aggregation in solution and the solid state.  相似文献   
106.
The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns. Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were performed investigating the role of both multiple binding modes (by binding space) and multiple isomers/states (by developing the corresponding isomeric space). The computed docking scores were used to develop consensus models, which allow an in-depth comparison of the resulting performances. On average, the reached performances revealed the different sensitivity to isomeric differences and multiple binding modes between the four docking engines. In detail, Glide and LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the most insensitive program. The obtained results emphasize the fruitful role of combining various docking tools to optimize the predictive performances. Taken together, the performed simulations allowed the rational development of highly performing virtual screening workflows, which could be further optimized by considering different 3CL-Pro structures and, more importantly, by including true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.  相似文献   
107.
Colloidal suspensions are susceptible to gravitationally induced phase separation. This can be mitigated by the formation of a particle network caused by depletion attraction. The effectiveness of this network in supporting the buoyant weight of the suspension can be characterized by its compressional modulus. We measure the compressional modulus for emulsion networks induced by depletion attraction and present a model that quantitatively predicts their gravitational stability. We also determine the relationship between the strength of the depletion attraction and the magnitude of the compressional modulus.  相似文献   
108.
Measurement of the critical fracture strength of single-crystal silicon was carried out by contact-free laser-based excitation and detection of nonlinear surface acoustic wave (SAW) pulses. The three crystallographic geometries Si(112)111[over ], Si(112)1[over ]1[over ]1, and Si(110)11[over ]1 were examined. A comparison of the optically detected SAW transients and numerically calculated stress-strain fields allowed an estimate of the intrinsic mechanical strength without using an artificial precrack. Depending on the geometry, the critical strength varied between 5 and 7 GPa.  相似文献   
109.
We study the stability of topological order against local perturbations by considering the effect of a magnetic field on a spin model--the toric code--which is in a topological phase. The model can be mapped onto a quantum loop gas where the perturbation introduces a bare loop tension. When the loop tension is small, the topological order survives. When it is large, it drives a continuous quantum phase transition into a magnetic state. The transition can be understood as the condensation of "magnetic" vortices, leading to confinement of the elementary "charge" excitations. We also show how the topological order breaks down when the system is coupled to an Ohmic heat bath and relate our results to error rates for topological quantum computations.  相似文献   
110.
The neodymium ferroborate NdFe3(BO3)4 undergoes an antiferromagnetic transition at T N = 30 K, which manifests itself as a λ-type anomaly in the temperature dependence of the specific heat C and as inflection points in the temperature dependences of the magnetic susceptibility χ measured at various directions of an applied magnetic field with respect to the crystallographic axes of the sample. Magnetic ordering occurs only in the subsystem of Fe3+ ions, whereas the subsystem of Nd3+ ions remains polarized by the magnetic field of the iron subsystem. A change in the population of the levels of the ground Kramers doublet of neodymium ions manifests itself as Schottky-type anomalies in the C(T) and χ(T) dependences at low temperatures. At low temperatures, the magnetic properties of single-crystal NdFe3(BO3)4 are substantially anisotropic, which is determined by the anisotropic contribution of the rare-earth subsystem to the magnetization. The experimental data obtained are used to propose a model for the magnetic structure of NdFe3(BO3)4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号