首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   10篇
  国内免费   1篇
化学   246篇
力学   1篇
数学   20篇
物理学   27篇
  2016年   7篇
  2015年   2篇
  2014年   11篇
  2013年   6篇
  2012年   13篇
  2011年   20篇
  2010年   11篇
  2009年   13篇
  2008年   22篇
  2007年   15篇
  2006年   32篇
  2005年   27篇
  2004年   17篇
  2003年   9篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1996年   3篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1974年   1篇
  1971年   1篇
  1967年   1篇
  1965年   2篇
  1964年   2篇
  1963年   2篇
  1962年   1篇
  1961年   1篇
  1955年   1篇
  1954年   1篇
  1943年   1篇
  1924年   1篇
  1923年   1篇
  1921年   1篇
  1916年   1篇
  1911年   1篇
  1909年   1篇
  1900年   1篇
  1897年   2篇
  1892年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
91.
 We describe a new method for 3 dimensional nanostructuring on silicon surfaces using self-assembled monolayers. Partial multilayers were formed by repeated deposition of trichlorosilylheptadecanoic acid methyl ester (TSHEME) and subsequent reduction to yield a hydroxylic surface. These structures were afterwards oxidised using UV/ozone, yielding silicon oxide features. In this way both organic multilayered structures as well as ones comprised of silicon oxide have been produced with precise control of the height and invariant lateral shape of these structures. We have tried to apply samples prepared in this fashion to the calibration of AFM-scanners in vertical direction. Due to height artefacts caused by the tip-sample interaction a general calibration is not possible on the molecular scale. However, the structures produced can be used as model systems for the investigation of various sources of height artefacts and also for calibration purposes as long as samples with similar chemical and mechanical properties are to be investigated.  相似文献   
92.
Inadequate access to pure water and sanitation requires new cost‐effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide‐spread application.  相似文献   
93.
This paper reviews recent advances in the field of plasmonic films fabricated by colloidal lithography. Compared with conventional lithography techniques such as electron beam lithography and focused ion beam lithography, the unconventional colloidal lithography technique with advantages of low-cost and high-throughput has made the fabrication process more efficient, and moreover brought out novel films that show remarkable surface plasmon features. These plasmonic films include those with nanohole arrays, nanovoid arrays and nanoshell arrays with precisely controlled shapes, sizes, and spacing. Based on these novel nanostructures, optical and sensing performances can be greatly enhanced. The introduction of colloidal lithography provides not only efficient fabrication processes but also plasmonic films with unique nanostructures, which are difficult to be fabricated by conventional lithography techniques.  相似文献   
94.
Photocatalytically active, multi‐chambered, biomolecule‐based microspheres were prepared by hierarchical co‐assembly of simple dipeptides and porphyrins. The colloidal microspheres are highly hydrated and consist of a network of J‐aggregate nanoscale substructures that serve as light‐harvesting antennae with a relatively broad spectral cross‐section and considerable photostability. These optical properties can be exploited in photocatalytic reactions involving inorganic or organic species. Taken together, these structural and functional features suggest that soft porous biomolecule‐based colloids are a plausible photosynthetic model that could be developed towards demonstrating aspects of primitive abiotic cellularity.  相似文献   
95.
96.
97.
98.
Molecular evolution, with self‐organization of simple molecules towards complex functional systems, provides a new strategy for biomimetic architectonics and perspectives for understanding the complex processes of life. However, there remain many challenges to fabrication of systems comprising different types of units, which interact with one another to perform desired functions. Challenges arise from a lack of stability, dynamic properties, and functionalities that reconcile with a given environment. A co‐assembling fiber system composed of simple peptide and porphyrin is presented. This material is considered a prebiotic assembly of molecules that can be rather stable and flexibly self‐functionalized with the assistance of visible light in a “prebiotic soup”; acidic (pH 2), hot (70 °C), and mineral‐containing (Na+, Ti4+, Pt2+, and so forth) water. The co‐assembled peptide–porphyrin fiber, with self‐mineralized reaction centers, may serve as a primitive photobacteria‐like cellular model to achieve light harvesting, energy transfer, and ultimately sustainable hydrogen evolution.  相似文献   
99.
Fullerenes, C60, modified with long alkyl chains form long-range ordered lamellar mesophases permitting a high C60 content. The mesomorphic fullerenes feature reversible electrochemistry and a comparably high electron carrier mobility making them attractive components for fullerene-based soft materials.  相似文献   
100.
We report a study of the electrostatic layer-by-layer self-assembly of electroactive polyelectrolyte multilayers incorporating the redox protein cytochrome c (cyt c) combined with recrystallization of the bacterial cell wall surface layer from Bacillus sphaericus CCM 2177 SbpA (S-layer). The polyelectrolyte multilayer assembly was prepared on flat gold electrodes with a nanometer-scale roughness that allowed monitoring of the film formation throughout all the assembly stages by atomic force microscopy measurements in liquid with respect to topography and forces. The deposition of alternating layers of sulfonated polyaniline and cyt c was carried out by adsorption from the corresponding solutions on a cyt c monolayer electrode. The electroactivity of cyt c within the assembly was confirmed by cyclic voltammetry. We showed that the surface properties of the electrode terminating layer change after each adsorption step accordingly. We also found that S-layer recrystallization on the top of the multilayer film was feasible while electroactivity of cyt c within a polyelectrolyte matrix was partially maintained. This approach offers a new strategy to design a biocompatible and permselective outer envelope of a polyelectrolyte multilayer, promising sensor applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号