首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   8篇
化学   83篇
晶体学   1篇
力学   7篇
数学   70篇
物理学   111篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   12篇
  2012年   13篇
  2011年   13篇
  2010年   5篇
  2009年   8篇
  2008年   9篇
  2007年   10篇
  2006年   16篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1989年   3篇
  1986年   4篇
  1985年   10篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   7篇
  1978年   2篇
  1977年   4篇
  1976年   8篇
  1975年   4篇
  1973年   6篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1941年   1篇
  1939年   1篇
  1937年   1篇
  1933年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
71.
72.
Herein, we report on the use a biohybrid catalyst consisting of palladium nanoparticles immobilized on cross-linked enzyme aggregates of lipase B of Candida antarctica (CalB CLEA) for the dynamic kinetic resolution (DKR) of benzylic amines. A set of amines were demonstrated to undergo an efficient DKR and the recyclability of the catalysts was studied. Extensive efforts to further elucidate the structure of the catalyst are presented.  相似文献   
73.
The photophysical properties of the title compound have been studied by fs and ns transient absorption spectroscopy. The electronic absorption spectrum consists of three principle absorptions assigned to terpy 1LLCT at ~300 nm, ruthenium (II) t2g6 to terpy 1MLCT at ~470 nm and Mo2 δ to terpycarboxylate at ~670 nm. The compound shows weak room temperature emission in THF solution at ~1,100 nm when excited into each of the aforementioned bands. This emission is assigned to the T1 state, 3MMδδ*. Transient absorption spectroscopy indicates a lifetime for T1 of 9.6 μs. This paper is dedicated to Prof. C. N. R. Rao.  相似文献   
74.
Metal iodide mediated three-component reactions of cyclopropanecarboxylic thioesters 1, aldehydes, and amines were developed. The initial products, pyrrolidines 2 were obtained in 39-73% yields, which could further be converted to lactams 4, via sequential reactions of a retro-aza-Michael addition and an intramolecular cyclization. This methodology provided facile access to analogs of both pyrrolidines 2 and lactams 4.  相似文献   
75.
Photolysis of phenyl and o-biphenylyl azide (at 270 nm) releases vibrationally excited singlet nitrene which isomerizes to the corresponding hot 1,2-didehydroazepine at a rate competitive with thermal relaxation. Using ultrafast vibrational spectroscopy we observe the formation of vibrationally excited 1,2-4,6-azacycloheptatetraene (1,2-didehydroazepine) in picoseconds following photolysis of phenyl azide in chloroform and o-biphenylyl azide in acetonitrile at ambient temperature.  相似文献   
76.
The photochemistry of para- and ortho-biphenylyl azides and 1-naphthyl azide was studied by ultrafast spectroscopy. In every case, the singlet azide second excited states were observed by transient absorption spectroscopy and were found to have lifetimes of hundreds of femtoseconds. The decay of the S(2) states of the azides was accompanied by the growth of transient absorption of the corresponding singlet nitrenes. The intermediate S(1) state of the azides could not be observed due to its low instantaneous concentration resulting from fast fragmentation and nitrene formation. Quantum chemical calculations predict that the S(2) state of the azide is bound and that there is a much lower barrier toward arylnitrene formation from the S(1) state of the azide. Vibrational cooling of para-biphenylnitrene (11 ps) was experimentally observed. The lifetime of singlet ortho-biphenylnitrene was 16 ps in acetonitrile and was not affected by perdeuteration of the aryl ring. The lifetime of singlet 1-naphthylnitrene is 12 ps in acetonitrile at ambient temperature.  相似文献   
77.
We study solutions of the focusing energy-critical nonlinear heat equation ut=Δu?|u|2u in R4. We show that solutions emanating from initial data with energy and H˙1-norm below those of the stationary solution W are global and decay to zero, via the “concentration-compactness plus rigidity” strategy of Kenig–Merle [33], [34]. First, global such solutions are shown to dissipate to zero, using a refinement of the small data theory and the L2-dissipation relation. Finite-time blow-up is then ruled out using the backwards-uniqueness of Escauriaza–Seregin–Sverak [17], [18] in an argument similar to that of Kenig–Koch [32] for the Navier–Stokes equations.  相似文献   
78.
The problem was motivated by Borvka's definitions of the carrier and the associated carrier. The inverse carrier problem is precisely defined and partially solved. Examples are given.  相似文献   
79.
The strong Chebyshev distribution and the Chebyshev orthogonal Laurent polynomials are examined in detail. Explicit formulas are derived for the orthogonal Laurent polynomials, uniform convergence of the associated continued fraction is established, and the zeros of the Chebyshev L-polynomials are given. This provides another well-developed example of a sequence of orthogonal L-polynomials  相似文献   
80.
Summary Results of our initial study of the use of parallel architecture super-computers in solving time-dependent quantum scattering equations are reported. The specific equations solved are obtained from the time-dependent Lippmann-Schwinger integral equation by means of a quadrature approximation to the time integral. This leads to a modified Cayley transform algorithm in which the primary computational step is a matrix-vector multiplication. Implementation has been carried out both for the MasPar MP-1 and the NCUBE 6400 parallel machines. The codes are written in a modular form that greatly facilitates porting from one machine architecture to another. Both parallel machines prove to be more powerful for this application than the serial architecture VAX 8650. Specific analysis of machine performance is given.Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. 2-7405-ENG-82. This research was supported by the Division of Chemical Sciences and Applied Mathematical Sciences, Office of Basic Energy SciencesR.A. Welch Predoctoral Fellow under R.A. Welch Foundation Grant E-608Supported in part under National Science Foundation Grant CHE89-07429  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号