首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1529篇
  免费   34篇
  国内免费   6篇
化学   955篇
晶体学   12篇
力学   41篇
数学   206篇
物理学   355篇
  2021年   10篇
  2019年   10篇
  2018年   20篇
  2017年   6篇
  2016年   23篇
  2015年   22篇
  2014年   25篇
  2013年   58篇
  2012年   49篇
  2011年   87篇
  2010年   55篇
  2009年   57篇
  2008年   79篇
  2007年   83篇
  2006年   72篇
  2005年   89篇
  2004年   74篇
  2003年   65篇
  2002年   57篇
  2001年   21篇
  2000年   32篇
  1999年   16篇
  1998年   23篇
  1997年   15篇
  1996年   25篇
  1995年   21篇
  1994年   22篇
  1993年   12篇
  1992年   14篇
  1991年   16篇
  1990年   9篇
  1989年   22篇
  1988年   9篇
  1987年   9篇
  1986年   12篇
  1985年   20篇
  1984年   23篇
  1983年   12篇
  1982年   22篇
  1981年   27篇
  1980年   23篇
  1979年   21篇
  1978年   23篇
  1977年   26篇
  1976年   14篇
  1975年   14篇
  1974年   12篇
  1973年   17篇
  1972年   6篇
  1971年   5篇
排序方式: 共有1569条查询结果,搜索用时 15 毫秒
81.
An efficient one-step synthesis of 1,1-dipfienyl-1-silacyclopent-3-ene 1 is reported.  相似文献   
82.
The insertion of an olefin into a preformed metal–carbon bond is a common mechanism for transition‐metal‐catalyzed olefin polymerization. However, in one important industrial catalyst, the Phillips catalyst, a metal–carbon bond is not present in the precatalyst. The Phillips catalyst, CrO3 dispersed on silica, polymerizes ethylene without an activator. Despite 60 years of intensive research, the active sites and the way the first Cr C bond is formed remain unknown. We synthesized well‐defined dinuclear CrII and CrIII sites on silica. Whereas the CrII material was a poor polymerization catalyst, the CrIII material was active. Poisoning studies showed that about 65 % of the CrIII sites were active, a far higher proportion than typically observed for the Phillips catalyst. Examination of the spent catalyst and isotope labeling experiments showed the formation of a Si–(μ‐OH)–CrIII species, consistent with an initiation mechanism involving the heterolytic activation of ethylene at CrIII O bonds.  相似文献   
83.
The overall kinetic performance of three production columns (2.1 mm × 100 mm format) packed with 1.6 μm superficially porous CORTECS‐C18+ particles was assessed on a low‐dispersive I‐class ACQUITY instrument. The values of their minimum intrinsic reduced plate heights (hmin = 1.42, 1.57, and 1.75) were measured at room temperature (295 K) for a small molecule (naphthalene) with an acetonitrile/water eluent mixture (75:25, v/v). These narrow‐bore columns provide an average intrinsic efficiency of 395 000 plates per meter. The gradient separation of 14 small molecules shows that these columns have a peak capacity about 25% larger than similar ones packed with fully porous BEH‐C18 particles (1.7 μm) or shorter (50 mm) columns packed with smaller core–shell particles (1.3 μm) operated under very high pressure (>1000 bar) for steep gradient elution (analysis time 80 s). In contrast, because their permeabilities are lower than those of columns packed with larger core–shell particles, their peak capacities are 25% smaller than those of narrow‐bore columns packed with standard 2.7 μm core–shell particles.  相似文献   
84.
Copolymers of 2‐ethylhexyl acrylate (EHA) and cholesteryloxycarbonyl‐2‐hydroxymethacrylate (CEM) were prepared by reversible addition–fragmentation chain‐transfer (RAFT) polymerization. Supramolecular complexes of these copolymers with carbon nanotubes (CNTs) were soluble in THF, toluene, and isooctane. The colloidal solutions remained stable for months without aggregation. The rationale for the choice of CEM was based on the high adsorption energy of cholesterol on the CNT surface, as computed by DFT calculations. Adsorption isotherms were experimentally measured for copolymers of various architectures (statistical, diblock, and star copolymers), thereby demonstrating that 2–5 cholesterol groups were adsorbed per polymer chain. Once the supramolecular complex had dried, the CNTs could be easily resolubilized in isooctane without the need for high‐power sonication and in the absence of added polymer. Analysis by atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicated that the CNTs were devoid of bundles. The supramolecular complexes could also be employed in an inverse emulsion polymerization of 2‐hydroxyethylmethacrylate (HEMA) in isooctane and dodecane, thereby leading to the formation of a continuous polymeric sheath around the CNTs. Thus, this technique leads to the formation of very stable dispersions in non‐polar organic solvents, without altering the fundamental properties of the CNTs.  相似文献   
85.
86.
New organotin(IV) derivatives containing the anionic ligands bis(3,5‐dimethylpyrazol‐1‐yl)dithioacetate [LCS2] and bis(3,5‐dimethylpyrazol‐1‐yl)acetate [LCO2] have been synthesized from reaction between (CH3)2SnCl2 and lithium salts of the ligands. Mononuclear complexes of the type {[LCX2](CH3)2SnCl} (X = S or O) have been obtained and fully characterized by elemental analyses and FT‐IR in the solid state and by NMR (1H, 13C and 119Sn) spectroscopy, conductivity measurements and electrospray ionization mass spectrometry in solution. The acute toxicity of new organotin(IV) derivatives on rat was studied, comparing their effect with those of dimethyltin chloride (CH3)2SnCl2. The comparison of LD50 of organotin(IV) complexes and (CH3)2SnCl2 administered intraperitoneally, as a single dose, evaluated in vivo on rats, showed that toxicity decreases as follows: (CH3)2SnCl2 > LCO2 > LCS2. The effect of these organotin(IV) complexes on DNA was evaluated in vitro and in vivo on rats treated with different doses of these compounds (1/20 LD50 and 1/100 LD50). The lymphocyte DNA status was assessed by the comet assay, a rapid and sensitive single‐cell electrophoresis technique, used to detect primary DNA damage in individual cells. After 36 h from the start of treatment the two new organotin(IV) derivatives induced a significant rise in comet assay parameters, indicating an increasing presence of damaged DNA. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
87.
88.
Purely organic radical ions dimerize in solution at low temperature, forming long, multicenter bonds, despite the metastability of the isolated dimers. Here, we present the first computational study of these π‐dimers in solution, with explicit consideration of solvent molecules and finite temperature effects. By means of force‐field and ab initio molecular dynamics and free energy simulations, the structure and stability of π‐[TCNE]22? (TCNE=tetracyanoethylene) dimers in dichloromethane have been evaluated. Although the dimers dissociate at room temperature, they are stable at 175 K and their structure is similar to the one in the solid state, with a cofacial arrangement of the radicals at an interplanar separation of approximately 3.0 Å. The π‐[TCNE]22? dimers form dissociated ion pairs with the NBu4+ counterions, and their first solvation shell comprises approximately 20 CH2Cl2 molecules. Among them, the eight molecules distributed along the equatorial plane of the dimer play a key role in stabilizing the dimer through bridging C?H???N contacts. The calculated free energy of dimerization of TCNE . ? in solution at 175 K is ?5.5 kcal mol?1. These results provide the first quantitative model describing the pairing of radical ions in solution, and demonstrate the key role of solvation forces on the dimerization process.  相似文献   
89.
A 80???J, 6?fs, CEP-stable high-contrast injector is demonstrated. The device relies on standard pulse post-compression in hollow-core fiber followed by a temporal filter based on cross-polarized wave generation. Pulses with a Gaussian spectrum over 350?nm, centered at 750?nm, are generated. Temporal measurements show that the contrast of the few-cycle pulses is enhanced on a femtosecond and picosecond time scale. The carrier-envelope phase stability is preserved (0.3?rad RMS). These performances make the system an ideal seed laser for high-power, high-contrast OPCPA systems.  相似文献   
90.
Silicon nitride (SiNx) films were prepared with a gas mixture of SiH4 and NH3 on Si wafers using the plasma-enhanced chemical vapor deposition (PECVD) method. High-resolution transmission electron microscopy and infrared absorption have been used to reveal the existence of the Si quantum dots (Si QDs) and to determine the chemical composition of the silicon nitride layers. The optical properties of these structures were studied by photoluminescence (PL) spectroscopy and indicate that emission mechanisms are dominated by confined excitons within Si QDs. The peak position of PL could be controlled in the wavelength range from 1.5 to 2.2 eV by adjusting the flow rates of ammonia and silane gases. Absorbance spectra obtained in the transmission mode reveal optical absorption from Si QDs, which is in good correlation with PL properties. These results have implications for future nanomaterial deposition controlling and device applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号