首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   1篇
  国内免费   1篇
化学   44篇
力学   2篇
数学   12篇
物理学   45篇
  2019年   2篇
  2016年   1篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1961年   2篇
  1960年   1篇
  1958年   1篇
排序方式: 共有103条查询结果,搜索用时 0 毫秒
101.
102.
The characterisation of the ionic compound of lithium chloride, LiCl, through XRD, SEM, DSC, TG, DTG and TG-MS analysis is reported. The results show that nominally anhydrous LiCl particles can readily absorb water from the ambient atmosphere to form a surface layer of lithium chloride mono-hydrate, LiCl·H2O. Solid surface-hydrated LiCl is de-dehydrated via a two-stage mechanism at low heating rates and via a single-stage mechanism at high heating rates. Molten LiCl exhibits substantial evaporation at temperatures below its nominal boiling point, with the rate of evaporation increasing significantly before complete evaporation occurs. The melting process of de-hydrated LiCl is marginally affected by the heating rate; whilst the evaporation process is strongly affected by the heating rate and also dependent on the quantity of material used and the flow rate of the gas passed over it. Heating of surface-hydrated LiCl up to the point of evaporation under a flow of argon and under a flow of ambient air gives identical results, proposing the possibility of performing LiCl-based processes in an air environment. The enthalpies and activation energies for the processes of surface de-hydration, melting, and high-temperature evaporation are determined. The results are consistent with the following thermal phase evolution:
$ [{\text{LiCl + LiCl}} \cdot {\text{H}}_{{\text{2}}} {\text{O}}]_{{{\text{solid}}}} \to [{\text{LiCl}}]_{{{\text{solid}}}} \to [{\text{LiCl}}]_{{{\text{liquid}}}} \mathop\rightarrow\limits^{{{{\text{H}}_{{\text{2}}} {\text{O}} \downarrow {\text{ HCl}} \uparrow}}}[{\text{LiCl-LiOH}}]_{{{\text{liquid}}}} \mathop\rightarrow\limits^{{{{\text{H}}_{{\text{2}}} {\text{O}} \uparrow}}}[{\text{LiCl-Li}}_{{\text{2}}} {\text{O}}]_{{{\text{liquid}}}} \to {\text{Gas}} $
  相似文献   
103.
Synthesis and thermal properties of poly(aliphatic/aromatic-ester) copolymers containing additionally poly(dimethylsiloxane) (PDMS) chains in the soft segments are discussed. A two step method of transesterification and polycondensation from the melt was carried out in a presence of magnesium-titanate catalyst. An aliphatic dimer fatty acid was used as a component of the soft segments while poly(butylene terephthalate) (PBT) constituted the hard blocks. Effectiveness of the incorporation of PDMS into polymer chain was confirmed by the Soxhlet extraction and infrared spectroscopy of an excess of 1,4-butane diol destilled off from the polycondensation reaction. Multiblock copolymers showed microphase separation as determined by differential scanning calorimetry. Incorporation of a small amount of PDMS (up to 14.5 wt.-%) into polymer chain containg low concentration of hard segments of PBT lead to decrease in crystallinity of such copolymers. This may indicate that semicrystalline PBT are dissolved in the amorphous matrix of the soft segments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号