首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1837篇
  免费   77篇
  国内免费   5篇
化学   956篇
晶体学   25篇
力学   116篇
数学   453篇
物理学   369篇
  2023年   21篇
  2022年   25篇
  2021年   26篇
  2020年   50篇
  2019年   58篇
  2018年   67篇
  2017年   58篇
  2016年   103篇
  2015年   71篇
  2014年   94篇
  2013年   306篇
  2012年   79篇
  2011年   83篇
  2010年   69篇
  2009年   65篇
  2008年   55篇
  2007年   57篇
  2006年   67篇
  2005年   26篇
  2004年   45篇
  2003年   22篇
  2002年   28篇
  2001年   31篇
  2000年   19篇
  1999年   27篇
  1998年   23篇
  1997年   28篇
  1996年   21篇
  1995年   19篇
  1994年   23篇
  1993年   15篇
  1992年   11篇
  1990年   9篇
  1989年   8篇
  1988年   13篇
  1987年   9篇
  1985年   15篇
  1984年   12篇
  1983年   11篇
  1982年   8篇
  1981年   15篇
  1980年   11篇
  1979年   9篇
  1978年   5篇
  1977年   6篇
  1975年   10篇
  1974年   5篇
  1973年   5篇
  1971年   5篇
  1927年   5篇
排序方式: 共有1919条查询结果,搜索用时 406 毫秒
121.
A simple, solvent-free and low cost method to activate the surface of nanofibrillated cellulose films for further functionalization is presented. The method is based on the oxidative properties of UV radiation and ozone, to effectively remove contaminants from nanocellulosic surface, which remains clean and reactive for at least a week. The efficiency of the method is demonstrated by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. In clear contrast to previous results on nanoscaled cellulose the relative atomic concentration of non-cellulosic carbon atoms was only 4 %, and water completely wetted the surface within seconds. After activation, neither chemical degradation nor morphological changes on cellulose were observed. This surface activation is essential for further functionalization of the film in dry state or nonpolar media. The surface activation was confirmed by silylation and a four times higher degree of substitution was achieved on the activated sample compared to non-activated reference film, as monitored with XPS.  相似文献   
122.
123.
Pomegranate pulp has been used as novel adsorbent for removing Cu(II) ions from aqueous solution. The optimum conditions for removal of Cu(II) ions were found to be pH 5.32, biosorbent dose 0.1 g, contact time 120 minutes, initial concentration 50 mg/L, and temperature 30°C. The kinetic data were well fitted to the pseudo-second-order model. The biosorption process agreed with the Langmuir isotherm model. Maximum monolayer biosorption capacity was 7.30 mg/g. Thermodynamic parameters suggest that the biosorption process is spontaneous and exothermic. Desorption studies were carried out with different desorbing agents.   相似文献   
124.
Anaphylaxis is a potentially life-threatening condition triggered mainly by the release of inflammatory mediators, notably histamine. In pharmaceutical research, drug discovery, and clinical evaluation, it may be necessary to accurately assess the potential of a compound, event, or disorder to promote the release of histamine. In contrast to the measurement of plasma histamine, determination of the stable metabolite 1-methyl-4-imidazoleacetic acid (tele-MIAA) in urine provides a noninvasive and more reliable methodology to monitor histamine release. This study presents a repeatable high-performance liquid chromatography coupled to electrospray mass spectrometry (LC–ESI–MS) method where tele-MIAA is baseline separated from its structural isomer 1-methyl-5-imidazoleacetic acid (pi-MIAA) and an unknown in human urine. The ion-pairing chromatography method, in reversed-phase mode, based on 0.5 mM tridecafluoroheptanoic acid demonstrated high repeatability and was applied in a clinical development program that comprised a large number of clinical samples from different cohorts. The inter- and intra-run precision of the method for tele-MIAA were 8.4 and 4.3 %, respectively, at the mean urinary concentration level, while method accuracy was between ?16.2 and 8.0 % across the linear concentration range of 22–1,111 ng mL?1. Overall, method precision was greater than that reported in previously published methods and enabled the identification of gender differences that were independent of age or demography. The median concentration measured in female subjects was 3.0 μmol mmol?1 of creatinine, and for male subjects, it was 2.1 μmol mmol?1 of creatinine. The results demonstrate that the method provides unprecedented accuracy, precision, and practicality for the measurement of tele-MIAA in large clinical settings.
Figure
Assessment of global histamine turnover by means of urinary tele-MIAA determination  相似文献   
125.
A production process in which the use of various types of chemicals seems to be ubiquitous makes the textile industry a growing problem regarding both public health as well as the environment. Among several substances used at each stage, the present study focuses on the quinolines, a class of compounds involved in the manufacture of dyes, some of which are skin irritants and/or classified as probable human carcinogens. A method was developed for the determination of quinoline derivatives in textile materials comprising ultrasound-assisted solvent extraction, solid phase extraction cleanup, and final analysis by gas chromatography/mass spectrometry. Quinoline and ten quinoline derivatives were determined in 31 textile samples. The clothing samples, diverse in color, material, brand, country of manufacture, and price, and intended for a broad market, were purchased from different shops in Stockholm, Sweden. Quinoline, a possible human carcinogen, was found to be the most abundant compound present in almost all of the samples investigated, reaching a level of 1.9 mg in a single garment, and it was found that quinoline and its derivatives were mainly correlated to polyester material. This study points out the importance of screening textiles with nontarget analysis to investigate the presence of chemicals in an unbiased manner. Focus should be primarily on clothing worn close to the body.  相似文献   
126.
Although solid-state nuclear magnetic resonance (NMR) is a versatile analytical tool to study polymorphs and phase transitions of pharmaceutical molecules and products, this work summarizes examples of spontaneous and unexpected (and unwanted) structural rearrangements and phase transitions (amorphous-to-crystalline and crystalline-to-crystalline) under magic angle spinning (MAS) conditions, some of them clearly being due to the pressure experienced by the samples. It is widely known that such changes can often be detected by X-ray powder diffraction (XRPD); here, the capability of solid-state NMR experiments with a special focus on 1H-13C frequency-switched Lee–Goldburg heteronuclear correlation (FSLG HETCOR)/MAS NMR experiments to detect even subtle changes on a molecular level not observable by conventional 1D NMR experiments or XRPD is presented. Furthermore, it is shown that a polymorphic impurity combined with MAS can induce a crystalline-to-crystalline phase transition. This showcases that solid-state NMR is not always noninvasive and such changes upon MAS should be considered in particular when compounds are studied over longer time spans.  相似文献   
127.
Elevated levels of reactive oxygen species (ROS) and deficient mitochondria are two weak points of cancer cells. Their simultaneous targeting is a valid therapeutic strategy to design highly potent anticancer drugs. The remaining challenge is to limit the drug effects to cancer cells without affecting normal ones. We have previously developed three aminoferrocene (AF)-based derivatives, which are activated in the presence of elevated levels of ROS present in cancer cells with formation of electron-rich compounds able to generate ROS and reduce mitochondrial membrane potential (MMP). All of them exhibit important drawbacks including either low efficacy or high unspecific toxicity that prevents their application in vivo up to date. Herein we describe unusual AF-derivatives lacking these drawbacks. These compounds act via an alternative mechanism: they are chemically stable in the presence of ROS, generate mitochondrial ROS in cancer cells, but not normal cells and exhibit anticancer effect in vivo.  相似文献   
128.
A comparison of the analytical performances of four different (bio)sensor designs in H2O2 determination is discussed. The (bio)sensor designs developed were based on the use of (i) multiwalled carbon nanotubes (MWCNT), zinc oxide nanoparticles (ZnONP), prussian blue (PB); (ii) MWCNT, ZnONP, PB and ionic liquid (IL); (iii) MWCNT, ZnONP and horseradish peroxidase (HRP) and (iv) MWCNT, ZnONP, HRP and IL modified glassy carbon electrode (GCE). A performance comparison of (bio)sensors showed that the one based on HRP/IL-MWCNT-ZnONP/GCE showed the best analytical characteristics with a linear dynamic range of 9.99×10−8–7.55×10−4 M, detection limit of 1.37×10−8 M and sensitivity of 17.00 μA mM−1.  相似文献   
129.
Kinetics of reactions of di‐n‐butylzinc, n‐Bu2Zn, and mixed n‐butyl(substituted phenyl)zinc reagents and n‐Bu(functional group (FG)?C6H4)Zn with benzoyl chloride in the presence of tri‐n‐butylphosphine have been investigated. Reaction rates of transferable n‐butyl group have been determined in tetrahydrofuran at 0 °C to compare the transfer rate of n‐butyl group in homo and mixed diorganozincs. Rate law is consistent with a third‐order reaction, which is first order in diorganozinc, benzoyl chloride, and n‐Bu3P, and a mechanism was proposed. The lower reaction rate of n‐BuPhZn than that of n‐Bu2Zn and negative reaction constant in Hammett plot are in accordance with the carbanionic charge of transferable n‐butyl group in the acylation reaction. These findings support the hypothesis that the reaction rate of transferable group, RT, changes depending upon the residual group, RR, in RRRTZn reagents. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
130.
Discerning the influence of electrochemical reactions on the electrode microenvironment is an unavoidable topic for electrochemical reactions that involve the production of OH and the consumption of water. That is particularly true for the carbon dioxide reduction reaction (CO2RR), which together with the competing hydrogen evolution reaction (HER) exert changes in the local OH and H2O activity that in turn can possibly affect activity, stability, and selectivity of the CO2RR. We determine the local OH and H2O activity in close proximity to a CO2-converting Ag-based gas diffusion electrode (GDE) with product analysis using gas chromatography. A Pt nanosensor is positioned in the vicinity of the working GDE using shear-force-based scanning electrochemical microscopy (SECM) approach curves, which allows monitoring changes invoked by reactions proceeding within an otherwise inaccessible porous GDE by potentiodynamic measurements at the Pt-tip nanosensor. We show that high turnover HER/CO2RR at a GDE lead to modulations of the alkalinity of the local electrolyte, that resemble a 16 m KOH solution, variations that are in turn linked to the reaction selectivity.  相似文献   
[首页] « 上一页 [8] [9] [10] [11] [12] 13 [14] [15] [16] [17] [18] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号