首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1046篇
  免费   94篇
  国内免费   5篇
化学   836篇
晶体学   8篇
力学   17篇
数学   121篇
物理学   163篇
  2023年   29篇
  2022年   20篇
  2021年   44篇
  2020年   63篇
  2019年   54篇
  2018年   22篇
  2017年   30篇
  2016年   52篇
  2015年   61篇
  2014年   45篇
  2013年   56篇
  2012年   66篇
  2011年   79篇
  2010年   38篇
  2009年   42篇
  2008年   44篇
  2007年   40篇
  2006年   44篇
  2005年   23篇
  2004年   16篇
  2003年   18篇
  2002年   18篇
  2001年   13篇
  2000年   10篇
  1999年   11篇
  1998年   13篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   9篇
  1992年   5篇
  1991年   8篇
  1990年   8篇
  1989年   11篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   8篇
  1984年   4篇
  1983年   5篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   4篇
  1977年   15篇
  1976年   7篇
  1975年   10篇
  1974年   6篇
  1973年   8篇
  1937年   5篇
排序方式: 共有1145条查询结果,搜索用时 250 毫秒
991.
High-fidelity simulations of an experimental rotating detonation engine with an axial air inlet were conducted. The system operated with hydrogen as fuel at globally stoichiometric conditions. Instantaneous data showed that the detonation front is highly corrugated, and is considerably weaker than an ideal Chapman–Jouguet wave. Regions of deflagration are present ahead of the wave, caused by mixing with product gases from the previous cycle, as well as the injector recovery process. It is found that as the post-detonation high pressure flow expands, the injectors recover unsteadily, leading to a transient mixing process ahead of the next cycle. The resulting flow structure not only promotes mixing between product and reactant gases, but also increases likelihood of autoignition. These results show that the detonation process is very sensitive to injector design and the transient behavior during the detonation cycle. Phase-averaged statistics and conditionally averaged data are used to understand the overall reaction structure. Comparisons with available experimental data on this configuration show remarkable good agreement of the predicted reacting flow structure.  相似文献   
992.
The reliable generation of quasi-homogeneous autoignition inside a combustor fed by a continuous air flow would represent a milestone in realizing pressure gain combustion in gas turbines. In this work, the ignition distribution inside a stratified fuel–air mixture is analyzed. The ability of precise and reproducible injection of a desired fuel profile inside a convecting air flow is verified by applying tunable diode laser absorption spectroscopy in non-reacting measurements. High-speed, static pressure sensors and ionization probes allow for simultaneous detection of the flame and pressure rise at several axial positions in reactive measurements with dimethyl ether as fuel. A second, exchangeable combustion tube enables optical observation of OH* intensity in combination with pressure measurements. Experiments with three arbitrary fuel profiles show a set of ignition distributions that vary in shape, homogeneity, and the number of simultaneous autoignition events. Although the measurements show notable variation, a significant and reproducible influence of the fuel injection on the ignition distribution is observed. Results show that uniform autoignition leads to a coupling of the reaction front with the pressure rise and, therefore, induces a greater aerodynamic constraint than non-uniform ignition distributions, which are dominated by propagating deflagration fronts.  相似文献   
993.
Recent advances in the coupling of vibrational spectroscopy with mass spectrometry create new opportunities for the structural characterization of metabolites with great sensitivity. Previous studies have demonstrated this scheme on 300 K ions using very high power free electron lasers in the fingerprint region of the infrared. Here we extend the scope of this approach to a single investigator scale as well as extend the spectral range to include the OH stretching fundamentals. This is accomplished by detecting the IR absorptions in a linear action regime by photodissociation of weakly bound N2 molecules, which are attached to the target ions in a cryogenically cooled, rf ion trap. We consider the specific case of the widely used drug Valsartan and two isomeric forms of its metabolite. Advantages and challenges of the cold ion approach are discussed, including disentangling the role of conformers and the strategic choices involved in the selection of the charging mechanism that optimize spectral differentiation among candidate structural isomers. In this case, the Na+ complexes are observed to yield sharp resonances in the high frequency NH and OH stretching regions, which can be used to easily differentiate between two isomers of the metabolite.
Graphical Abstract ?
  相似文献   
994.
The continuous flow, enantioselective, organophotoredox catalytic asymmetric alkylation of aldehydes was studied, by using a homemade, custom-designed photoreactor for reactions under cryogenic conditions. Going from microfluidic conditions up to a 10 mL mesofluidic reactor, an increase of productivity by almost 18000 % compared to the batch reaction was demonstrated. Finally, for the first time, a stereoselective photoredox organocatalytic continuous flow reaction in a fully telescoped process for an active pharmaceutical ingredient (API)synthesis was successfully achieved. The final process consists of four units of operation: visible light-driven asymmetric catalytic benzylation under continuous flow, inline continuous work-up, neutralisation and a final oxidative amidation step afforded the pharmaceutically active molecule in 95 % e.e.  相似文献   
995.
Photoredox-catalyzed chemical conversions are predominantly operated in organic media to ensure good compatibility between substrates and catalysts. Yet, when conducted in aqueous media, they are an attractive, mild, and green way to introduce functional groups into organic molecules. We here show that trifluoromethyl groups can be readily installed into a broad range of organic compounds by using water as the reaction medium and light as the energy source. To bypass solubility obstacles, we developed robust water-soluble polymeric nanoparticles that accommodate reagents and photocatalysts within their hydrophobic interior under high local concentrations. By taking advantage of the high excited state reduction potential of N-phenylphenothiazine (PTH) through UV light illumination, the direct C−H trifluoromethylation of a wide array of small organic molecules is achieved selectively with high substrate conversion. Key to our approach is slowing down the production of CF3 radicals during the chemical process by reducing the catalyst loading as well as the light intensity, thereby improving effectiveness and selectivity of this aqueous photocatalytic method. Furthermore, the catalyst system shows excellent recyclability and can be fueled by sunlight. The method we propose here is versatile, widely applicable, energy efficient, and attractive for late-stage introduction of trifluoromethyl groups into biologically active molecules.  相似文献   
996.
The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3?x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep‐discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na‐ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling‐induced solid‐electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g?1) and 179.3 mAh g?1 (1 A g?1) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems.  相似文献   
997.
998.
We demonstrate an improvement in efficiency of GaAs solar cells using front surface texturing with dielectric 1D and 2D nanopatterns obtained by a low cost laser interference lithography technique. The strong light scattering by the surface dielectric nanopatterns effectively increases the optical path of the incident light in the absorber layers resulting in an efficiency increase up to 23.5% compared to that of the reference solar cell. The observed efficiency improvement in the studied solar cells shows the potential use of low cost photoresist as an antireflection coating material and further application of other robust dielectric materials as texturing layer.  相似文献   
999.
1000.
Electron paramagnetic resonance spectra of 5-doxyl-stearic acid, 3-(2-Dodecyl-1-oxyl-5,5-dimethylpyrrolidin-2-yl)propanoic acid radical (4-proxyl-palmitic acid) and of 3-(1-Oxyl-2,5-dimethyl-5-dodecylpyrrolidine-2-yl)propanoic acid radical (4-azetoxyl-stearic acid) in lipid micelles of nonaethyleneglycol-monododecyl ether (C12E9) and pentaethyleneglycol-monooctyl ether (C8E5) can reveal immobilized components typical of spin-labeled protein-bound fatty acids as well as phospholipids. The occurrence of such species depends on the detergent, the relative orientation of the nitroxide group with respect to the longitudinal axis and the molecular structure of the fatty acid as well as on polarity and ionic strength of the aqueous phase. Whereas 5-doxyl-stearic acid and 4-proxyl-palmitic acid exhibited these highly immobilized components in C12E9 micelles but not in C8E5, only a single relatively mobile component was observed with 4-azetoxyl-stearic acid in both detergents. The immobilized component is lost by the addition of isopropanol but not as much by ethanol and also when distilled water is substituted for the buffer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号