首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  国内免费   1篇
化学   51篇
力学   6篇
数学   2篇
物理学   13篇
  2023年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1985年   1篇
  1984年   2篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1966年   1篇
  1931年   1篇
  1930年   1篇
  1929年   1篇
排序方式: 共有72条查询结果,搜索用时 265 毫秒
61.
The reactivity of a range of Keggin and Wells–Dawson type heteropolyacids (HPAs): H3PW12O40 H4SiW12O40, H3PMo12O40, K6P2W18O62, and NaH2W12O4, towards the heavily glycosylated α-1-acid glycoprotein (AGP) is reported. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) show that after incubation of the protein with HPAs at 80 °C and pH 2.8 complete hydrolysis of terminal glycosidic bond has been achieved, resulting in the removal of sialic acids with no observed destruction of the protein core or the residual glycan chains. The 1H NMR spectroscopy confirmed that the released sialic acids preserve intact structure upon their excision from the protein, which makes the reported method suitable for the analysis of sialic acid modifications which play an important role in numerous biological processes. The presence of other sugars was not detected by 1H NMR and HPAEC-PAD, suggesting that HPAs hydrolyze only the terminal glycosidic bond in the glycoprotein, resulting in the selective release of sialic acid from AGP. The kinetic results have shown that under equal temperature and pH conditions, the hydrolysis of the terminal glucosidic bond occurred faster in the presence of HPAs compared to conventional mineral acids. The observed rate constants were in the range 6,7×10−2 −11,9×10−2 min−1 and the complete and selective excision of sialic acids could be achieved within 60 min of incubation. The Trp fluorescence and CD spectroscopy show that non-covalent interaction between HPA and protein takes place in solution which could lead to stabilization of the sialosyl cation that is formed during the glycosidic bond hydrolysis by anionic HPA cluster.  相似文献   
62.
The thrust produced by lateral jet systems has been successfully used for several years to control the flight trajectory, i.e., the maneuverability of spacecraft in the high atmosphere and in orbit. Recently this technology has also been applied to projectiles and rockets flying in the low atmosphere from sea level up to more than 10 km. At ISL, investigations have been performed with a 90 mm caliber full-scale projectile in order to study a special side jet controlling system at flight speeds of about 1500 m/s, i.e., Mach number at altitudes of 1.5 and 7.5 km. The High Energy ISL Shock Tunnel facility is used as a ground testing facility in which the flow around the projectile is studied at fully duplicated flight conditions. In the test facility the projectile is fixed inside the test chamber and the atmospheric air is set in motion flowing around the projectile test model. The air flow is generated in the ISL Shock Tunnel STB which is equipped for this purpose with a divergent square nozzle with an exit side length of 184 mm. A lateral gas jet is produced by combusting a solid propellant in a combustion chamber, placed inside the projectile. The powder gases are blown out laterally via a nozzle, creating a complex flow field by the interaction of the lateral jet with the external cross flow. Differential interferometry is used to visualize the behavior of the external flow field distorted by the lateral jet outflow. Numerical simulations have been performed based on steady state computations using the conservation equations of mass, momentum and energy. This was done to theoretically predict the development of the flow field around the projectile under the influence of the side jet. As final result the lateral force acting on the projectile is given as force and moment amplification factors, KF and KM respectively.Received: 7 May 2002, Accepted: 12 March 2003, Published online: 16 May 2003An abridged version of this paper was presented at the 23rd Int. Symposium on Shock Waves at Fort Worth, Texas, from July 22 to 27, 2001  相似文献   
63.
A theory analogue to tha of Rouse is given, to describe the rheological behavior of dilute solutions consisting of clusters of crosslinked polymers. The frequency-dependent behavior of the dynamic moduli of these fluids differs substantially from that of the well-known Rouse-like fluid (GG1/2). In our case the storage modulus becomes proportional to 3/2, while the loss modulus is proportional to . The loss modulus dominates the dynamic behavior for frequencies smaller than the largest normal frequency of the clusters.  相似文献   
64.
For aerodynamic force measurement in shock tunnels and similar short duration aerodynamic testing facilities we have developed a novel measurement technique. Its key feature is a mounting support, which releases the test model and grips it again after a free flight duration of about 10 milliseconds. The model is equipped with small accelerometers and may contain additional installations. The short free flight allows the use of thin wires because the model travels only a few millimeters during this time. Validation experiments with a cone-cylinder of known drag coefficient show good accuracy with a response time of about half a millisecond. Pitot pressure measurement and suitable data processing allow for direct evaluation of aerodynamic coefficients in slowly changing flow.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   
65.
66.
田字形不对称电阻网络等效电阻的计算   总被引:1,自引:1,他引:0  
本文运用丫-△等效互换的方法得出田字形不对称电阻网络等效电阻的数学表达式.  相似文献   
67.
Conformationally strained trans-cyclooctenes (TCOs) engage in bioorthogonal reactions with tetrazines with second order rate constants that can exceed 106 M?1s?1. The goal of this study was to provide insight into the stability of TCO reagents and to develop methods for stabilizing TCO reagents for long-term storage. The radical inhibitor Trolox suppresses TCO isomerization under high thiol concentrations and TCO shelf-life can be greatly extended by protecting them as stable Ag(I) metal complexes. 1H NMR studies show that Ag-complexation is thermodynamically favorable but the kinetics of dissociation are very rapid, and TCO?AgNO3 complexes are immediately dissociated upon addition of NaCl which is present in high concentration in cell media. The AgNO3 complex of a highly reactive s-TCO-TAMRA conjugate was shown to label a protein-tetrazine conjugate in live cells with faster kinetics and similar labeling yield relative to a ‘traditional’ TCO-TAMRA conjugate.  相似文献   
68.
We consider single two-dimensional aggregates containing glass particles trapped at a water/oil or water/air interface. Two modes for aggregate break-up are observed: break-up by fragmentation into a few parts and break-up by erosion of single particles. We have studied the critical shear rate for these modes as a function of the aggregate size. Two different particle sizes were used. The smaller particles, with a radius of 65 microm, form aggregates that break up predominantly by erosion at a shear rate between 0.5 and 0.7 s(-1). This value hardly depends on the size of the aggregates. The larger particles, with a radius of 115 microm, form aggregates that break by erosion or by fragmentation. In both modes, the critical shear rate again depends only weakly on the size of the aggregates and ranges between 1.6 and 2.2 s(-1). Also the structural changes inside the aggregate before break-up were studied. The aggregate behavior at the water/air and water/oil interfaces is quite similar. The critical shear rate for break up was also modeled. The model shows in both modes a weak dependence of the critical shear rate on the aggregate size, which is consistent with the experimental observations. The kinetics of the erosion process was also modeled and compared with the experimentally obtained time dependence of the aggregate size. The differences in the large and small particle systems can be attributed to the occurrence of friction forces between the particles, which one expects to be much larger for the large particle system, due to the stronger two-particle interaction.  相似文献   
69.
We present the synthesis of discrete functionalized polyester nanoparticles in selected nanoscale size dimensions via a controlled intermolecular chain cross-linking process. The novel technique involves the controlled coupling of epoxide functionalized polyesters with 2,2'-(ethylenedioxy)bis(ethylamine) to give well-defined nanoparticles with narrow size distribution and selected nanoscopic size dimensions. Diverse functionalized polyesters, synthesized with pendant functionalities via ring-opening copolymerization of delta-valerolactone with alpha-allyl-delta-valerolactone, alpha-propargyl-delta-valerolactone and 2-oxepane-1,5-dione, were prepared as linear precursors which facilitated 3-D nanoparticles with functionalities such as amines, keto groups, and alkynes for post modification reactions. We found that the nanoparticle formation and the control over the nanoscopic dimension is primarily influenced by the degree of the epoxide entity implemented in the precursor polymers and the amount of 2,2'-(ethylenedioxy)bis(ethylamine) as cross-linking reagent. The other functionalities in the linear polyester do not participate in the nanoparticle formation and particles with defined functionalities can be prepared from batches of identical linear polymers containing various functionalities or by mixing different polyester materials to achieve controlled amounts of specific functional groups. The utilization of integrated functionalities was demonstrated in one post-modification reaction with N-Boc-ethylenediamine via reductive amination. This work describes the development of a novel methodology to prepare functionalized well-defined 3-D nanoparticle polyester materials in targeted nanoscopic ranges with amorphous morphologies or tailored crystallinities that offer a multitude of utilizations as a result of their unique properties and control in preparation.  相似文献   
70.
We studied the mechanical behavior of densely packed (up to approximately 30% v/v), sedimented layers of (1 microm) water-in-oil W/O emulsion droplets, upon indentation with a (10 microm) large spherical probe. In the presence of attractive forces, the droplets form solid like networks which can resist deformation. Adding a polymer to the oil phase was used to control droplet attraction. The droplet layers were assembled via normal gravity settling. Considering that both the network structure and the droplet interactions play a key role, we used a combination of atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM) to characterize the mechanical behavior. Here the AFM was used both as indentation tool and as force sensor. Indentation experiments were performed via a protocol consisting of approach, waiting, and retract stages. CSLM was used to observe the network structure at micron resolution in real time. Use of refractive index matched fluorescent droplets allowed the visualization of the entire layer. Upon compression with the probe, a markedly nonhomogeneous deformation occurred, evidenced by the formation of a dense corona (containing practically all of the displaced droplets) in the direct vicinity of the probe, as well as more subtle deformations of force-chains at larger distances. Upon decompression, both the imprint of the indenter and the corona remained, even long after the load was released. The force-distance curves recorded with the AFM correspond well to these observations. For each deformation cycle performed on fresh material, the retract curve was much steeper than the approach curve, thus corroborating the occurrence of irreversible compaction. Contrary to classic linear viscoelastic materials, this hysteresis did not show any dependence on the deformation speed. Our force-indentation approach curves were seen to scale roughly as F approximately delta(3/2). The pre-factor was found to increase with the polymer concentration and with the density of the network. These findings suggest that this new AFM-CSLM method could be used for rheological characterization of small volumes of "granular networks" in liquid. Our hypothesis that the mechanical resistance of the networks originates from interdroplet friction forces, which in turn are set by the interdroplet potential forces, is supported by the predictions from a new mechanical model in which the interdroplet bonds are represented by stick-slip elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号