首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   977篇
  免费   34篇
  国内免费   8篇
化学   648篇
晶体学   11篇
力学   24篇
数学   157篇
物理学   179篇
  2023年   11篇
  2022年   8篇
  2021年   25篇
  2020年   22篇
  2019年   28篇
  2018年   13篇
  2017年   7篇
  2016年   33篇
  2015年   15篇
  2014年   25篇
  2013年   28篇
  2012年   50篇
  2011年   54篇
  2010年   28篇
  2009年   16篇
  2008年   51篇
  2007年   48篇
  2006年   51篇
  2005年   54篇
  2004年   44篇
  2003年   31篇
  2002年   29篇
  2001年   18篇
  2000年   43篇
  1999年   23篇
  1998年   5篇
  1997年   8篇
  1995年   7篇
  1992年   11篇
  1991年   7篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   9篇
  1985年   5篇
  1984年   8篇
  1983年   13篇
  1982年   15篇
  1981年   9篇
  1980年   10篇
  1979年   13篇
  1978年   7篇
  1977年   8篇
  1976年   6篇
  1975年   9篇
  1974年   9篇
  1973年   10篇
  1970年   5篇
  1969年   6篇
  1959年   5篇
排序方式: 共有1019条查询结果,搜索用时 15 毫秒
991.
The indolocarbazole biosynthetic enzymes StaC, InkE, RebC, and AtmC mediate the degree of oxidation of chromopyrrolic acid on route to the natural products staurosporine, K252a, rebeccamycin, and AT2433-A1, respectively. Here, we show that StaC and InkE, which mediate a net 4-electron oxidation, bind FAD with a micromolar K(d), whereas RebC and AtmC, which mediate a net 8-electron oxidation, bind FAD with a nanomolar K(d) while displaying the same FAD redox properties. We further create RebC-10x, a RebC protein with ten StaC-like amino acid substitutions outside of previously characterized FAD-binding motifs and the complementary StaC-10x. We find that these mutations mediate both FAD affinity and product specificity, with RebC-10x displaying higher StaC activity than StaC itself. X-ray structures of this StaC catalyst identify the substrate of StaC as 7-carboxy-K252c and suggest a unique mechanism for this FAD-dependent enzyme.  相似文献   
992.
Potassium lithium niobate (KLN) is a nonlinear optical material with a high nonlinearity. It has the potential to improve the performance and reduce the cost of blue and UV lasers. KLN crystals are not commercially viable because growth by traditional techniques is not possible. In an effort to develop commercially viable KLN, single crystals of the material were grown by the laser heated pedestal growth method (LHPG) with compositions of x=0.02, 0.06 and 0.2 following K3Li2?xNb5+xO15+2x. Noncritical phase matching at 20 °C for previously unreported compositions of x=0.02 and 0.06 was measured at 795 nm and 805 nm, respectively. Overall, the results suggest that single crystal KLN can be used for SHG into the UV region of the spectrum and can be developed into a commercially viable nonlinear optical material.  相似文献   
993.
Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with trimethylsilane-1-d, Me(3)SiD, in the gas phase. The reaction was studied at total pressures up to 100 Torr (with and without added SF(6)) over the temperature range of 295-407 K. The rate constants were found to be pressure independent and gave the following Arrhenius equation: log[(k/(cm(3) molecule(-1) s(-1))] = (-13.22 ± 0.15) + [(13.20 ± 1.00) kJ mol(-1)]/(RT ln 10). When compared with previously published kinetic data for the reaction of ClSiH with Me(3)SiH, kinetic isotope effects, k(D)/k(H), in the range from 7.4 (297 K) to 6.4 (407 K) were obtained. These far exceed values of 0.4-0.5 estimated for a single-step insertion process. Quantum chemical calculations (G3MP2B3 level) confirm not only the involvement of an intermediate complex, but also the existence of a low-energy internal isomerization pathway which can scramble the D and H atom labels. By means of Rice-Ramsperger-Kassel-Marcus modeling and a necessary (but small) refinement of the energy surface, we have shown that this mechanism can reproduce closely the experimental isotope effects. These findings provide the first experimental evidence for the isomerization pathway and thereby offer the most concrete evidence to date for the existence of intermediate complexes in the insertion reactions of silylenes.  相似文献   
994.
[reaction: see text] The synthesis of the highly substituted indole portion of the complex tremorgenic natural products lolicine A and B is presented. The Diels-Alder reaction of a quinone monoimine enables the synthesis of an appropriately substituted indole. The key step in the synthesis is a tandem isopropenyl cuprate addition/aldol cyclocondensation which provides the necessary functionality for elaboration to the 2,2,5,5-tetramethyltetrahydrofuran.  相似文献   
995.
Kim JG  Camp EH  Walsh PJ 《Organic letters》2006,8(20):4413-4416
The first catalytic asymmetric methallylation of ketones is reported. The catalyst, which is generated from titanium tetraisopropoxide, H8-BINOL, 2-propanol, and tetramethallylstannane, reacts with ketones in acetonitrile to afford tertiary homoallylic alcohols in fair to excellent yields (55-99%) and fair to high enantioselectivities (46-90%). Ozonolysis of the resulting products provides access to chiral beta-hydroxy ketones, which are not readily prepared from direct asymmetric aldol reaction of acetone with ketones.  相似文献   
996.
Amphiphilic macromolecules containing a polystyrene-adherent peptide domain and a cell-repellent poly(ethylene glycol) domain were designed, synthesized, and evaluated as a cytophobic surface coating. Such cytophobic, or cell-repellent, coatings are of interest for varied medical and biotechnological applications. The composition of the polystyrene binding peptide domain was identified using an M13 phage display library. ELISA and atomic force spectroscopy were used to evaluate the binding affinity of the amphiphile peptide domain to polystyrene. When coated onto polystyrene, the amphiphile reduced cell adhesion of two distinct mammalian cell lines and pathogenic Staphylococcus aureus strains.  相似文献   
997.
Four adjacent open reading frames, cytC1-C4, were cloned from a cytotrienin-producing strain of a Streptomyces sp. by using primers derived from the conserved region of a gene encoding a nonheme iron halogenase, CmaB, in coronamic acid biosynthesis. CytC1-3 were active after expression in Escherichia coli, and CytC4 was active after expression in Pseudomonas putida. CytC1, a relatively promiscuous adenylation enzyme, installs the aminoacyl moieties on the phosphopantetheinyl arm of the holo carrier protein CytC2. CytC3 is a nonheme iron halogenase that will generate both gamma-chloro- and gamma,gamma-dichloroaminobutyryl-S-CytC2 from aminobutyryl-S-CytC2. CytC4, a thioesterase, hydrolytically releases the dichloroaminobutyrate, a known streptomycete antibiotic. Thus, this short four-protein pathway is likely the biosynthetic source of this amino acid antimetabolite. This four-enzyme system analogously converts the proS-methyl group of valine to the dichloromethyl product regio- and stereospecifically.  相似文献   
998.
A one-pot method to prepare highly functionalized (Z)-disubstituted allylic alcohols is introduced. Hydroboration of a variety of 1-bromo-1-acetylenes with dicyclohexyl borane, reaction with t-BuLi, and transmetalation to zinc generates a (Z)-disubstituted vinylzinc reagent. In situ reaction of this reagent with aldehydes generates (Z)-disubstituted allylic alcohols in high yields (81-97%). Addition to chiral protected alpha- or beta-oxygenated aldehydes proceeds with diastereoselectivities between 6:1 and 18:1. The anti-Felkin product is obtained in most cases.  相似文献   
999.
Rapamycin, FK506, and FK520 are immunosuppressant macrolactone natural products comprised of predominantly polyketide-based core structures. A single nonproteinogenic pipecolic acid residue is installed into the scaffold by a nonribosomal peptide synthetase that also performs the subsequent macrocyclization step at the carbonyl group of this amino acid. It has been assumed that pipecolic acid is generated from lysine by the cyclodeaminases RapL/FkbL. Herein we report the heterologous overexpression and purification of RapL and validate its ability to convert L-lysine to L-pipecolic acid by a cyclodeamination reaction that involves redox catalysis. RapL also accepts L-ornithine as a substrate, albeit with a significantly reduced catalytic efficiency. Turnover is presumed to encompass a reversible oxidation at the alpha-amine, internal cyclization, and subsequent re-reduction of the cyclic delta1-piperideine-2-carboxylate intermediate. As isolated, RapL has about 0.17 equiv of tightly bound NAD+, suggesting that the enzyme is incompletely loaded when overproduced in E. coli. In the presence of exogenous NAD+, the initial rate is elevated 8-fold with a Km of 2.3 microM for the cofactor, consistent with some release and rebinding of NAD+ during catalytic cycles. Through the use of isotopically labeled substrates, we have confirmed mechanistic details of the cyclodeaminase reaction, including loss of the alpha-amine and retention of the hydrogen atom at the alpha-carbon. In addition to the characterization of a critical enzyme in the biosynthesis of a medically important class of natural products, this work represents the first in vitro characterization of a lysine cyclodeaminase, a member of a unique group of enzymes which utilize the nicotinamide cofactor in a catalytic manner.  相似文献   
1000.
A general synthetic approach was developed for the preparation of a series of 6,6-bicyclic malonamides, a class of ligands that provide a preorganized binding site for f-block ions (particularly trivalent lanthanides). The approach described is convenient to introduce a variety of functional groups at the amide nitrogens to tune the properties of the ligand without altering the preorganized binding. Each of the ten derivatives (that represent a range of functionality, including R = alkyl, hydroxy, phenyl, ester, perfluorocarbon) reported here derives from a single, readily prepared dialdehyde intermediate. This intermediate is converted to the final products via reductive amination with an appropriately functionalized benzylamine, followed by hydrogenolysis and lactam formation. Because derivatization occurs late in the synthesis, the approach is general, requiring only modification of the purification procedures for each new derivative. To aid in the purification of the bicyclic malonamides, we report a novel complexation-based purification method that takes advantage of the high affinity of the ligand for f-block metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号