首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28090篇
  免费   1068篇
  国内免费   170篇
化学   18891篇
晶体学   271篇
力学   973篇
综合类   1篇
数学   2441篇
物理学   6751篇
  2023年   150篇
  2022年   117篇
  2021年   518篇
  2020年   451篇
  2019年   478篇
  2018年   357篇
  2017年   339篇
  2016年   773篇
  2015年   683篇
  2014年   873篇
  2013年   1588篇
  2012年   2087篇
  2011年   2267篇
  2010年   1375篇
  2009年   1205篇
  2008年   1837篇
  2007年   1723篇
  2006年   1619篇
  2005年   1512篇
  2004年   1313篇
  2003年   1040篇
  2002年   1017篇
  2001年   700篇
  2000年   593篇
  1999年   352篇
  1998年   257篇
  1997年   299篇
  1996年   338篇
  1995年   266篇
  1994年   272篇
  1993年   280篇
  1992年   264篇
  1991年   208篇
  1990年   151篇
  1989年   139篇
  1988年   140篇
  1987年   120篇
  1986年   97篇
  1985年   170篇
  1984年   112篇
  1983年   97篇
  1982年   122篇
  1981年   92篇
  1980年   80篇
  1978年   81篇
  1977年   86篇
  1976年   95篇
  1975年   102篇
  1974年   82篇
  1973年   104篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
991.
[reaction: see text] (-)-Sparteine-mediated asymmetric lithiation-substitution sequences of 2- and 3-substituted N-(Boc)-N-(p-methoxyphenyl) allylic amines with electrophiles have been investigated. Asymmetric lithiation-substitutions of N-(Boc)-N-(p-methoxyphenyl) allylic amines 11, 12, 13, 14, and 15 provide highly enantioenriched enecarbamates in good yields. Further transformations to give aldehydes, acids, ketones, and a Diels-Alder adduct are reported. The 1,4-addition products from reactions of the lithiated allylic amines from 14 and 15 with conjugated activated alkenes gives enecarbamates with two and three stereogenic centers in good yields with high diastereomeric and enantiomeric ratios. Synthetic transformation of these products by acid hydrolysis and subsequent cyclization provide stereoselective access to bicyclic compounds containing four and five stereogenic centers with high diastereoselectivity and enantioselectivity. It is suggested that allyllithium complexes generated by asymmetric deprotonation react with most electrophiles with inversion of configuration.  相似文献   
992.
Liquid chromatographic comparisons for enantiomer resolution of α-amino acids and chiral primary amino compounds were made using chiral stationary phases (CSPs) prepared by covalently bonding (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18-C-6-TA) of the same chiral selector. The resolution of all α-amino acids on CSP 1 developed in our group was found to be better than that on CSP 2 reported by Machida et al. All α-amino acids examined in this study were well enantioseparated on CSP 1 (α=1.22–2.47), while four analytes were not resolved or all the other analytes were poorly resolved on CSP 2 than on CSP 1. However, in resolving the primary amino compounds without a carbonyl group, CSP 1 was comparable with CSP 2. Although (+)-18-C-6-TA of the same chiral selector was used to prepare CSP 1 and CSP 2, this study showed that different connecting methods for the CSPs might influence their ability to resolve the analytes depending on their structures related to the chiral recognition mechanism.  相似文献   
993.
Reaction of 1,3,5-trimethyl-1,3,5-triazacyclohexane [(MeNCH2)3] with Os3(CO)12 in refluxing toluene results in C-H and C-N bond activation of the (MeNCH2)3 ligand to afford three amidino cluster complexes (μ-H)Os3(CO)10[μ,η2-CH(NMe)2] (1), (μ-H)Os3(CO)932-CH(NMe)2] (2), and Os2(CO)6[μ,η2-CH(NMe)2]2 (3). The controlled experiments show that thermolysis of 1 yields 2, and heating 2 in the presence of (MeNCH2)3 ligand produces 3. The molecular structures of 1 and 3 have been determined by an X-ray diffraction study.  相似文献   
994.
Arsenic trioxide (As(2)O(3)) has been found to be remarkably effective in the treatment of patients with acute promyelocytic leukemia (APL). Although evidences for the proapoptotic activity of As(2)O(3) have been suggested in leukemic and other solid cancer cells, the nature of intracellular mechanisms is far from clear. In the present study, we investigated As(2)O(3) affect on the stress-responsive signaling pathways and pretreatment with antioxidants using HepG2 cells. When treated with micromolar concentrations of As(2)O(3), HepG2 cells became highly apoptotic paralleled with activation of caspase-3 and members of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK) and c-jun NH(2)-terminal kinase (JNK) but not p38 MAP kinase. However, inhibition of each kinase activity failed to inhibit apoptosis by As(2)O(3). Addition of n-acetyl cysteine (NAC) or diphenyleneiodonium (DPI) effectively protected cells from apoptosis and significantly lowered As(2)O(3)-induced activation of caspase-3. However, neither NAC nor DPI was able to effect ERK or JNK activation induced by As(2)O(3). Guanidinoethyldisulfide dihydrochloride (GED) and 2-ethyl-2-thiopseudourea (ETU), known inhibitors of the inducible nitric oxide synthase (iNOS), also suppressed the apoptotic activity of As(2)O(3). These results suggest that As2O3 induces caspase-mediated apoptosis involving a mechanism generating oxidative stress. However, activation of some stress-responsive signaling pathways by As(2)O(3) may not be the major determinant in the course of apoptotic processes.  相似文献   
995.
Three new pregnane glycosides, cynatroside A ( 1 ), cynatroside B ( 2 ), and cynatroside C ( 3 ), isolated from the roots of Cynanchum atratum (Asclepiadaceae), were characterized as 7β‐{[Oα‐L ‐cymaropyranosyl‐(1→4)‐Oβ‐D ‐digitoxopyranosyl‐(1→4)‐β‐D ‐oleandropyranosyl]oxy}‐3,4,4a,4b,5,6,7,8,10,10a‐decahydro‐6α‐hydroxy‐4b‐ methyl‐2‐(2‐methyl‐3‐furyl)phenanthren‐1(2H)‐one ( 1 ), 7β‐{[Oβ‐D ‐cymaropyranosyl‐(1→4)‐Oα‐L ‐diginopyranosyl‐(1→4)‐β‐D ‐cymaropyranosyl]oxy}‐3,4,4a,4b,5,6,7,8,10,10a‐decahydro‐2,6α‐dihydroxy‐4b‐methyl‐2‐(2‐methyl‐3‐furyl)phenanthren‐1(2H)‐one ( 2 ), and 7β‐{[Oα‐L ‐cymaropyranosyl‐(1→4)‐Oβ‐D ‐digitoxopyranosyl‐(1→4)‐β‐L ‐cymaropyranosyl]oxy}‐3,4,4a,4b,5,6,7,8,10,10a‐decahydro‐2,6α‐dihydroxy‐4b‐methyl‐2‐(2‐methyl‐3‐furyl)phenanthren‐1(2H)‐one ( 3 ), respectively. In addition, ten known constituents were identified, i.e., cynascyroside D ( 4 ), glaucoside C ( 5 ), glaucoside D ( 6 ), atratoside A ( 7 ), 2,4‐dihydroxyacetophenone ( 8 ), 4‐hydroxyacetophenone ( 9 ), syringic acid ( 10 ), azelaic acid ( 11 ), suberic acid ( 12 ), and succinic acid ( 13 ). Among these compounds, 1 – 4 significantly inhibit acetylcholinesterase activity.  相似文献   
996.
Cyclization were occurred via the coupling reactions of some mercuric chloride derivatives of sydnone with LiPdCl3-CuCl2. A unique six-membered ring, 3,3′-ethylene-4,4′-bissydnone, was obtained by the cyclization reation of 1,2-di[3-(4-chloromercuric)sydnonyl]ethane. However, the seven-membered 3,3′-trimethylene-4,4′-bissydnone and 1,3-di[3-(4-chloro)sydnonyl]-propane were obtained from the corresponding mercuric chlroide of sydnone. Onyl substitution reaction took place when 4,4′-di[3-(4-chloromercuric)sydnonyl]biphenyl, 4,4′-di[3-(4-chloromercuric)sydnonyl]benzene, di(p-[3-(4-chloromercuric)sydnonyl]-phenyl}methane and, di(p-[3-(4-chloromercuric)sydnonyl]phenyl]ether were treated using the same process.  相似文献   
997.
The rate of enzymatic degradation of surface‐modified microbial polyesters, poly[(R)‐3‐hydroxybutyrate] and poly[(R)‐3‐hydroxybutyrate‐co‐3‐hydroxyvalerate], was studied. The plasma treatments were carried out in a CF3H or O2 environment. It was found that the CF3H plasma‐treated polyesters exhibited significant retardation of enzymatic erosion because of the surface fluorocarbon groups induced by CF3H plasma. These surface fluorocarbon groups act as retardants on enzymatic degradation due to increased hydrophobicity and of the inactivity of enzymes. However, the increased surface hydrophilicity of polyesters induced by O2 plasma results in no significant acceleration of the enzymatic erosion, which may be due to the thin modified layer.

Weight loss profiles of P(3HB) film exposed to CF3H plasma as a function of plasma exposure time.  相似文献   

998.
We have recently investigated the biodegradation of a number of acidic aromatic compounds that give excellent chromatography using trifluoroacetic acid (TFA) based HPLC methods. Unfortunately HPLC methods using TFA are not usually compatible with detection by negative ion mass spectrometry as TFA suppresses ionisation of the analyte during the electrospray process. We present a preliminary investigation of the use of an anion-exchange micro-membrane suppressor to remove TFA on-line post column with the aim of improvement of mass spectral data using an aromatic acid as an example, Thus LC-MS using a TFA based HPLC method with negative ion mass spectral detection is shown to be possible with good sensitivity.  相似文献   
999.
Yang C  Lee HM  Nolan SP 《Organic letters》2001,3(10):1511-1514
[reaction: see text] A new phosphine-imidazolium salt, L.HBr (1, L = (1-ethylenediphenylphosphino-3-(mesityl))imidazol-2-ylidene), has been prepared. A combination of 0.5 mol % of Pd(dba)(2) and 0.5 mol % of L.HBr in the presence of 2 equiv of Cs(2)CO(3) as base has proven to be highly efficient in the Heck coupling reactions of aryl bromides (from electron-deficient to electron-rich aryl bromides) with n-butyl acrylate.  相似文献   
1000.
A new method for the determination of triphenyltin hydroxide using capillary column gas chromatography with a tin-selective flame photometric detector has been developed. Triphenyltin hydroxide and its potential metabolites are converted to methyl derivatives and separated on glass capillary columns coated with OV-101. Derivatization of triphenyltin hydroxide, triphenyltin chloride, diphenyltin dichloride, phenyltin trichloride, and bis-triphenyltin oxide is nearly quantitative with a minimum of redistribution products. The selectivity of the flame photometric detector is cearly demonstrated by the comparison of chromatographic profiles obtained from using both the flame photometric and flame ionization detectors. The use of this chromatographic system in the analysis of triphenyltin hydroxide in a fortified water sample demonstrates the potential use of this system in organotin residue chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号