首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47496篇
  免费   18142篇
  国内免费   74篇
化学   58163篇
晶体学   84篇
力学   2102篇
数学   2865篇
物理学   2498篇
  2023年   4077篇
  2022年   1416篇
  2021年   2492篇
  2020年   4650篇
  2019年   2356篇
  2018年   2311篇
  2017年   623篇
  2016年   5616篇
  2015年   5576篇
  2014年   5005篇
  2013年   5341篇
  2012年   3399篇
  2011年   1267篇
  2010年   3532篇
  2009年   3483篇
  2008年   1285篇
  2007年   967篇
  2006年   352篇
  2005年   311篇
  2004年   290篇
  2003年   229篇
  2002年   230篇
  2001年   186篇
  2000年   177篇
  1997年   138篇
  1995年   172篇
  1994年   146篇
  1993年   299篇
  1992年   185篇
  1988年   182篇
  1987年   164篇
  1986年   153篇
  1985年   198篇
  1984年   193篇
  1983年   138篇
  1982年   195篇
  1981年   225篇
  1980年   259篇
  1979年   245篇
  1978年   242篇
  1977年   373篇
  1976年   414篇
  1975年   495篇
  1974年   519篇
  1973年   314篇
  1972年   386篇
  1971年   368篇
  1970年   549篇
  1969年   425篇
  1968年   458篇
排序方式: 共有10000条查询结果,搜索用时 500 毫秒
991.
The combination of 2D materials opens a wide range of possibilities to create new-generation structures with multiple applications. Covalently cross-linked approaches are a ground-breaking strategy for the formation of homo or heterostructures made by design. However, the covalent assembly of transition metal dichalcogenides flakes is relatively underexplored. Here, a simple covalent cross-linking method to build 2H-MoS2–MoS2 homostructures is described, using commercially available bismaleimides. These assemblies are mainly connected vertically, basal plane to basal plane, creating specific molecular sized spaces between MoS2 sheets. Therefore, this straightforward approach gives access to the controlled connection of sulfide-based 2D materials.  相似文献   
992.
993.
Cucurbit[n]urils (Q[n]s) are a relatively young family of macrocycles, consisting of glycoluril units bridged by methylene groups, and their unique structures have attracted extensive attention from chemists in recent decades. Due to the presence of a rigid hydrophobic inner cavity and two polar outer portals lined with carbonyl groups, Q[n]s not only encapsulate guest species into the cavity, but also coordinate with metal ions/clusters. Considerable achievements have been obtained in the fields of Q[n]s-based host–guest chemistry, coordination chemistry, as well as the combination of host–guest and coordination chemistry. Furthermore, the outer surface of Q[n]s has been demonstrated to be capable of interacting with definite species to generate supramolecular architectures in recent years. With more in-depth research into Q[n]s, their application studies have also emerged as a hot topic. This Minireview focuses on recent advances in the potential applications of solid-state materials based on Q[n]s and their derivatives for the capture and adsorption of hazardous chemicals from a solution or a gas mixture.  相似文献   
994.
Alkali metal alkoxides are widely used in chemistry due to their Brønsted basic and nucleophilic properties. Potassium alkoxides assist alkyllithium in the metalation of hydrocarbons in Lochmann-Schlosser-bases. Both compounds form mixed aggregates, which enhance the thermal stability, solubility, and the basic reactivity of these mixtures. A very unusual spherical mixed alkoxy aggregate was discovered by Grützmacher et al., where a central dihydrogen phosphide anion is surrounded by a highly dynamic shell of thirteen sodium atoms and a hull of twelve tert-butoxide groups. This structural motif can be reproduced by a reaction of trimethylsilyl compounds of methane, halogens, or pseudo-halogens with excess sodium tert-butoxide. A nucleophilic substitution releases the corresponding anion, which is then encapsulated by the sodium alkoxide units. The compounds are soluble in hydrocarbon solvents, enabling studies of solutions by high-resolution NMR spectroscopy and IR/Raman studies of the crystalline materials.  相似文献   
995.
Water-soluble and thermoresponsive macrocycles with stable inclusion toward guests are highly valuable to construct stimuli-responsive supramolecular materials for versatile applications. Here, we develop such macrocycles – ureido-substituted cyclodextrins (CDs) which exhibit unprecedented upper critical solution temperature (UCST) behavior in aqueous media. These novel CD derivatives showed good solubility in water at elevated temperature, but collapsed from water to form large coacervates upon cooling to low temperature. Their cloud points are greatly dependent on concentration and can be mediated through oxidation and chelation with silver ions. Significantly, the amphiphilicity of these CD derivatives is supportive to host-guest binding, which affords them inclusion abilities to guest dyes. The inclusion complexation remained nearly intact during thermally induced phase transitions, which is in contrast to the switchable inclusion behavior of lower critical solution temperature (LCST)-type CDs. Moreover, ureido-substituted CDs were exploited to co-encapsulate a pair of guest dyes whose fluorescence resonance energy transfer process can be switched by the UCST phase transition. We therefore believe these novel thermoresponsive CDs may form a new strategy for developing smart macrocycles and allow for exploring smart supramolecular materials.  相似文献   
996.
A series of the octapalladium chains supported by meso-Ph2PCH2P(Ph)CH2P(Ph)CH2PPh2 (meso-dpmppm) ligands, [Pd8(meso-dpmppm)4(L)2](BF4)4 (L=none ( 1 ), solvents: CH3CN ( 2 a ), dmf ( 2 b ), dmso ( 2 c ), RN≡C: R=Xyl ( 3 a ), Mes ( 3 b ), Dip ( 3 c ), tBu ( 3 d ), Cy ( 3 e ), CH3(CH2)7 ( 3 f ), CH3(CH2)11 ( 3 g ), CH3(CH2)17 ( 3 h )) and [Pd8(meso-dpmppm)4(X)2](BF4)2 (X=Cl ( 4 a ), N3 ( 4 b ), CN ( 4 c ), SCN ( 4 d )), were synthesized by using 2 a as a stable good precursor, and characterized by spectroscopic (IR, 1H and 31P NMR, UV-vis-NIR, ESI-MS) measurements and X-ray crystallographic analyses (for 1 , 2 a , b , 3 a , b , e , f , 4 a – d ). On the basis of DFT calculations on the X-ray determined structure of 2 b ( [2b-Pd8]4+ ) and the optimized models [Pd8(meso-Ph2PCH2P(H)CH2P(H)CH2PH2)4(CH3CN)2]4+ ( [Pd8Ph8]4+ ) and [Pd8(meso-H2PCH2P(H)CH2P(H)CH2PH2)4(CH3CN)2]4+ ( [Pd8H8]4+ ), with and without empirically calculating dispersion force stabilization energy (B3LYP-D3, B3LYP), the formation energy between the two Pd4 fragments is assumed to involve mainly noncovalent interactions (ca. −70 kcal/mol) with four sets of interligand C−H/π interactions and Pd⋅⋅⋅Pd metallophilic one, while electron shared covalent interactions are almost canceled out within the Pd8 chain. All the compounds isolated are stable in solution and exhibit characteristic absorption at ∼900 nm, which is assignable to a spin allowed HOMO to LUMO transition, and shows temperature dependent intensity change with variable absorption coefficients presumably due to coupling with some thermal vibrations. The structures and electronic states of the Pd8 chains are found finely tunable by varying the terminal capping ligands. In particular, theoretical calculations elucidated that the HOMO-LUMO energy gap is systematically related to the central Pd−Pd distance (2.7319(6)–2.7575(6) Å) by two ways with neutral ligands L ( 1 , 2 , 3 ) and with anionic ligands X ( 4 ), which are reflected on the NIR absorption energy of 867–954 nm. The isocyanide terminated Pd8 complexes ( 3 ) further reacted with excess of RNC (6 eq) to afford the Pd4 complexes, [Pd4(meso-dpmppm)2(RNC)2](BF4)2 ( 13 ), and the cyclic voltammograms of 2 a (L=CH3CN), 3 , and 13 (R=Xyl, Mes, tBu, Cy) demonstrated wide range redox behaviors from 2{Pd4}4+ to 2{Pd4}0 through 2{Pd4}2+↔{Pd8}4+, {Pd8}3+, and {Pd8}2+ strings. The oxidized complexes, [Pd4(meso-dpmppm)2(RNC)3](BF4)4 ( 16 ), were characterized by X-ray analyses, and the two-electron reduced chain of [Pd8(meso-dpmppm)4](BF4)2 ( 7 ) was analyzed by spectroscopic and electrochemical techniques and DFT calculations. Reactions of 2 a with 1 equiv. of aromatic linear bisisocyanide (BI) in CH2Cl2 deposited insoluble coordination polymers, {[Pd8(meso-dpmppm)4(BI)](BF4)4}n ( 5 ), and interestingly, they were soluble in acetonitrile, 31P{1H} and 1H DOSY NMR spectra as well as SAXS curves suggesting that the coordination polymers may exist in acetonitrile as dynamically 1D self-assembled coordination polymers comprising ca. 50 units of the Pd8 rod averaged within the timescale.  相似文献   
997.
Characterized by long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure, intermetallics have attracted increasing attention in the area of chemical synthesis and catalytic applications. Liquid-phase synthesis of intermetallics has arisen as the promising methodology due to its precise control over size, shape, and resistance toward sintering compared with the traditional metallurgy. This short review tends to provide perspectives on the liquid-phase synthesis of intermetallics in terms of both thermodynamics and methodology, as well as its applications in various catalytic reactions. Specifically, basic thermodynamics and kinetics in the synthesis of intermetallics will be first discussed, followed by discussing the main factors that will affect the formation of intermetallics during synthesis. The application of intermetallics in electrocatalysis will be demonstrated case by case at last. We conclude the review with perspectives on the future developments with respect to both synthesis and catalytic applications.  相似文献   
998.
Photoacids attract increasing scientific attention, as they are valuable tools to spatiotemporally control proton-release reactions and pH values of solutions. We present the first time-resolved spectroscopic study of the excited state and proton-release dynamics of prominent merocyanine representatives. Femtosecond transient absorption measurements of a pyridine merocyanine with two distinct protonation sites revealed dissimilar proton-release mechanisms: one site acts as a photoacid generator as its pKa value is modulated in the ground state after photoisomerization, while the other functions as an excited state photoacid which releases its proton within 1.1 ps. With a pKa drop of 8.7 units to −5.5 upon excitation, the latter phenolic site is regarded a super-photoacid. The 6-nitro derivative exhibits only a phenolic site with similar, yet slightly less photoacidic characteristics and both compounds transfer their proton to methanol and ethanol. In contrast, for the related 6,8-dinitro compound an intramolecular proton transfer to the ortho-nitro group is suggested that is involved in a rapid relaxation into the ground state.  相似文献   
999.
A series of six new Fe(II)NHC-carboxylic sensitizers with their ancillary ligand decorated with functions of varied electronic properties have been designed with the aim to increase the metal-to- surface charge separation and light harvesting in iron-based dye-sensitized solar cells (DSSCs). ARM130 scored the highest efficiency ever reported for an iron-sensitized solar cell (1.83 %) using Mg2+ and NBu4I-based electrolyte and a thick 20 μm TiO2 anode. Computational modelling, transient absorption spectroscopy and electrochemical impedance spectroscopy (EIS) revealed that the electronic properties induced by the dimethoxyphenyl-substituted NHC ligand of ARM130 led to the best combination of electron injection yield and spectral sensitivity breadth.  相似文献   
1000.
The way chemical transformations are described by models based on microscopic reversibility does not take into account the irreversibility of natural processes, and therefore, in complex chemical networks working in open systems, misunderstandings may arise about the origin and causes of the stability of non-equilibrium stationary states, and general constraints on evolution in systems that are far from equilibrium. In order to be correctly simulated and understood, the chemical behavior of complex systems requires time-dependent models, otherwise the irreversibility of natural phenomena is overlooked. Micro reversible models based on the reaction-coordinate model are time invariant and are therefore unable to explain the evolution of open dissipative systems. The important points necessary for improving the modeling and simulations of complex chemical systems are: a) understanding the physical potential related to the entropy production rate, which is in general an inexact differential of a state function, and b) the interpretation and application of the so-called general evolution criterion (GEC), which is the general thermodynamic constraint for the evolution of dissipative chemical systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号