首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   2篇
化学   95篇
力学   1篇
数学   7篇
物理学   29篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2017年   2篇
  2015年   1篇
  2013年   7篇
  2012年   2篇
  2011年   2篇
  2008年   5篇
  2007年   10篇
  2006年   5篇
  2005年   11篇
  2004年   7篇
  2003年   1篇
  2002年   5篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   4篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1935年   2篇
  1931年   2篇
  1923年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
21.
22.
The vapor of (chlorocarbonyl)sulfenyl bromide, ClC(O)SBr, was isolated in solid Ar, Kr, N(2), and Ar doped with 5% CO at 15 K, and the matrix was subsequently irradiated with broad-band UV--visible light (200 < or = lambda < or = 800 nm), the changes being followed by reference to the IR spectrum of the matrix. The initial spectrum showed the vapor of ClC(O)SBr to consist of more than 99% of the syn form (with the C==O bond syn with respect to the S--Br bond) in equilibrium with less than 1% of the anti conformer. Irradiation caused various changes to occur. First, conformational randomization took place, leading to a roughly equimolar mixture of the two rotamers, and so affording the first spectroscopic characterization of an anti-ClC(O)S-containing compound. Simultaneously, the novel constitutional isomer syn-BrC(O)SCl was also formed. Continued photolysis resulted in the decay of all these species while revealing a third reaction channel, leading to the elimination of CO and the formation of the new triatomic sulfur halide BrSCl. The assignment of the IR bands to the different products was made on the basis of the usual criteria, taking account (i) of the effects of the naturally occurring isotopic pairs (35)Cl/(37)Cl and (79)Br/(81)Br, (ii) of the vibrational properties of related molecules, and (iii) of the properties predicted for the relevant molecules by quantum chemical calculations.  相似文献   
23.
Pure fluorocarbonyl trifluoromethanesulfonate, FC(O)OSO(2)CF(3), is prepared in about 70% yield by the ambient-temperature reaction between FC(O)SCl and AgCF(3)SO(3). The geometric structure and conformational properties of the gaseous molecule have been studied by gas electron diffraction (GED), vibrational spectroscopy [IR(gas), IR(matrix), and Raman(liquid)] and quantum chemical calculations (HF, MP2, and B3LYP with 6-311G basis sets); in addition, the solid-state structure has been determined by X-ray crystallography. FC(O)OSO(2)CF(3) exists in the gas phase as a mixture of trans [FC(O) group trans with respect to the CF(3) group] and gauche conformers with the trans form prevailing [67(8)% from GED and 59(5)% from IR(matrix) measurements]. In both conformers the C=O bond of the FC(O) group is oriented synperiplanar with respect to the S-O single bond. The experimental free energy difference between the two forms, DeltaG degrees = 0.49(13) kcal mol(-1) (GED) and 0.22(12) kcal mol(-1) (IR), is slightly smaller than the calculated value (0.74-0.94 kcal mol(-1)). The crystalline solid at 150 K [monoclinic, P2(1)/c, a = 10.983(1) A, b = 6.4613(6) A, c = 8.8508(8) A, beta = 104.786(2) degrees ] consists exclusively of the trans conformer.  相似文献   
24.
25.
26.
27.
The destructive distiliation of rubber tire samples was studied by thermogravimetry, differential scanning calorimetry, combustion calorimetry, and mass spectroscopy. The decomposition reaction was found to be exothermic and produced a mass loss of sixty-five percent. The products from the distillation process were a solid residue with a heating value of about ?3 × 107 J kg?1. a liquid with a heating value of about ?4 × 107 J kg?1, and a combustible gas of undetermined heating value. The gas evolution curves which were obtained indicate that a variety of organic materials are evolved simultaneously during decomposition of the rubber polymer.  相似文献   
28.
The reactions of the binuclear oxomolybdenum(V) complex [Cl(2)(O)Mo(&mgr;-OEt)(2)(&mgr;-HOEt)Mo(O)Cl(2)] (1) with Me(3)Si(allyl) and SbF(3) produce the compounds [Mo(6)O(6)Cl(6)(&mgr;(3)-O)(2)(&mgr;(2)-OEt)(6)(&mgr;(2)-Cl)(2)] (2) and [Mo(8)O(8)Cl(6)(&mgr;(3)-O)(4)(OH)(2)(&mgr;(2)-OH)(4)(&mgr;(2)-OEt)(4)(HOEt)(4)] (3), respectively. Treatment of 1 with the Lewis base PMe(3) affords the tetrameric complex [Mo(4)O(4)Cl(4)(&mgr;(2)-OEt)(4)(HOEt)(2)(&mgr;(3)-O)(2)] (4), which represents another link in the chain of clusters produced by the reactions of 1 and simulating the build-up of polymeric molybdenum oxides by sol-gel methods. The crystal structure of 4 has been determined [C(12)H(32)Cl(4)Mo(4)O(12), triclinic, P&onemacr;, a = 7.376(2) ?, b = 8.807(3) ?, c = 11.467(4) ?, alpha = 109.61(1) degrees, beta = 92.12(3) degrees, gamma = 103.75(2) degrees, Z = 1]. By contrast, reaction of 1 with the nitrogen base NEt(3), followed by treatment with [PPN]Cl.2H(2)O ([PPN](+) = [Ph(3)P=N=PPh(3)](+)), gives the complex [PPN](+)[Et(3)NH](+)[Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-) (6) in 90% yield. Its crystal structure [C(36)H(30)Cl(4)MoNOP(2), triclinic, Pna2(1), a = 21.470(6) ?, b = 16.765(2) ?, c = 9.6155(14) ?, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, Z = 16] includes the anion [Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-), which is a charged derivative of the species forming the gels in sol-gel processes starting from chloromolybdenum ethoxides. Furthermore, compound 1 is found to be catalytically active in esterification and dehydration reactions of alcohols.  相似文献   
29.
Matrix isolation experiments give evidence for the formation of the loosely bonded metal-silane complex M.SiH(4) by the spontaneous reaction of Al or Ga atoms (M) with silane in a solid Ar matrix at 12 K; however, Ga(2) appears to insert spontaneously into an Si--H bond to form HGaGaSiH(3), probably with the structure HGa(micro-SiH(3))Ga. In M.SiH(4) the metal atom is eta(2)-coordinated by the silane, resulting in a species with C(2v) symmetry. The complex has a distinctive photochemistry: it can be converted on photolysis at lambda approximately 410 or approximately 254 nm to its tautomer, HMSiH(3), which also has a doublet ground electronic state and from which it can be regenerated with lambda approximately 580 nm radiation. Broadband UV-visible photolysis (lambda=200-800 nm) results in decomposition of HMSiH(3), the univalent species MSiH(3) being the only detectable product. The experimental data collected for several silane isotopomers (SiH(4), SiD(4), and SiD(3)H) and different reagent concentrations, together with the results of sophisticated quantum chemical calculations, are used to explore in detail the properties of the detected species and the reaction pathways compassing their formation.  相似文献   
30.
Bond paths and the bond critical point properties (the electron density (rho) and the Hessian of rho at the bond critical points (bcp's)) have been calculated for the bonded interactions comprising the nickel sulfide minerals millerite, NiS, vaesite, NiS(2), and heazlewoodite, Ni(3)S(2), and Ni metal. The experimental Ni-S bond lengths decrease linearly as the magnitudes of the properties each increases in value. Bond paths exist between the Ni atoms in heazlewoodite and millerite for the Ni-Ni separations that match the shortest separation in Ni metal, an indicator that the Ni atoms are bonded. The bcp properties of the bonded interactions in Ni metal are virtually the same as those in heazlewoodite and millerite. Ni-Ni bond paths are absent in vaesite where the Ni-Ni separations are 60% greater than those in Ni metal. The bcp properties for the Ni-Ni bonded interactions scatter along protractions of the Ni-S bond length-bcp property trends, suggesting that the two bonded interactions have similar characteristics. Ni-Ni bond paths radiate throughout Ni metal and the metallic heazlewoodite structures as continuous networks whereas the Ni-Ni paths in millerite, a p,d-metal displaying ionic and covalent features, are restricted to isolated Ni(3) rings. Electron transport in Ni metal and heazlewoodite is pictured as occurring along the bond paths, which behave as networks of atomic size wires that radiate in a contiguous circuit throughout the two structures. Unlike heazlewoodite, the electron transport in millerite is pictured as involving a cooperative hopping of the d-orbital electrons from the Ni(3) rings comprising Ni(3)S(9) clusters to Ni(3) rings in adjacent clusters via the p-orbitals on the interconnecting S atoms. Vaesite, an insulator at low temperatures and a doped semiconductor at higher temperatures, lacks Ni-Ni bond paths. The net charges conferred on the Ni and S atoms are about a quarter of their nominal charges for the atoms in millerite and vaesite with the net charge on Ni increasing with increasing Ni-S bond length. Reduced net charges are observed on the Ni atoms in heazlewoodite and are related to its Ni-Ni metal bonded interactions and to the greater covalent character of its bonds. Local energy density and bond critical point properties of the electron density distributions indicate that the Ni-S and Ni-Ni bonded interactions are intermediate in character between ionic and covalent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号