首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3210篇
  免费   139篇
  国内免费   20篇
化学   2523篇
晶体学   7篇
力学   54篇
数学   466篇
物理学   319篇
  2023年   15篇
  2022年   18篇
  2021年   27篇
  2020年   71篇
  2019年   49篇
  2018年   29篇
  2017年   42篇
  2016年   74篇
  2015年   101篇
  2014年   105篇
  2013年   177篇
  2012年   212篇
  2011年   223篇
  2010年   161篇
  2009年   120篇
  2008年   220篇
  2007年   213篇
  2006年   218篇
  2005年   200篇
  2004年   152篇
  2003年   131篇
  2002年   154篇
  2001年   68篇
  2000年   53篇
  1999年   60篇
  1998年   45篇
  1997年   52篇
  1996年   58篇
  1995年   44篇
  1994年   31篇
  1993年   23篇
  1992年   19篇
  1991年   11篇
  1990年   16篇
  1989年   13篇
  1987年   10篇
  1986年   8篇
  1985年   14篇
  1982年   12篇
  1981年   8篇
  1980年   7篇
  1979年   9篇
  1978年   7篇
  1977年   14篇
  1974年   6篇
  1973年   7篇
  1971年   7篇
  1969年   6篇
  1968年   7篇
  1966年   6篇
排序方式: 共有3369条查询结果,搜索用时 296 毫秒
31.
Starting with 1,2,4,6-tetra-O-acetyl-3-O-dodecyl-β-d-glucose (1), mixed alkyl-perfluoroalkyl substituted sugar derivatives with an anomeric perfluoroalkylthio group and an O-alkyl group in the 3 position were synthesized via 2,4,6-tri-O-acetyl-3-O-dodecyl-1-thio-β-d-glucose (4). The latter was S-perfluorohexylated with 1-iodoperfluorohexane in a dithionite initiated reaction yielding perfluorohexyl 2,4,6-tri-O-acetyl-3-O-dodecyl-1-thio-β-d-glucopyranoside (5). Experiments with the aim compound 5 completely to deacetylate ended in surprising results. Thus, methanolic methanolate solution produced the orthoester 7 as the result of α-fluoride replacement by methoxy groups as well as the methyl glucoside 8 as the result of a transglycosylation reaction. Alumina supported cesium fluoride cleaved regioselectively the two acetyl groups in the 4- and 6-position yielding perfluorohexyl 2-O-acetyl-3-O-dodecyl-1-thio-β-d-glucopyranoside (10). A complete deacetylation of 5 to amphiphile 11 succeeded only with methanolic tert-butanolate. However, the products 8 and 10 were likewise formed.  相似文献   
32.
Binuclear Nickel(0) Complexes with “Snake Ligands” of 1-Azadiene Type: Model Systems of the Oxidative Coupling of 1-Azadienes and 1.3-Dienes at Nickel(0) Synthesis, properties, and reactions of dimeric nickel(0) complexes with special 1-azadiene typ ligands (“snake ligands”) are described. The X-ray analysis of a typical compound (Bis-(bis-cinnamaldehyde-N,N'-propylendiimine)-dinickel(0)) shows that both central atoms have the coordination number 3. The four 1-azadiene groups are coordinated in a different way: unidendate coordination by N-Ni(1) bond and bidendate coordination by N-Ni(1) and olefine-Ni(2) bond. The compound is a good model system for the oxidative coupling reaction of 1-azadienes with 1.3-dienes at 2 nickel(0) centres. IR and electronic spectra show other complexes with this type of ligands to have an analogous coordination sphere.  相似文献   
33.
The assembly of thioacetyl-terminated oligo(phenylene ethynylene)s (OPEs) on Au and Pt surfaces under an electric potential (electrochemical assembly, EA) was compared to assembly at an open circuit (conventional self-assembly, CSA). Cyclic voltammetry and ellipsometry were used to characterize the adsorption kinetics of self-assembled monolayers formed by these two techniques. The adsorption rate of the EA was remarkably faster at positive potentials but slower at negative potentials than that of the CSA, The EA at 400 mV proceeded about 800 times faster than the CSA when exposed to the same solution concentrations. The adsorption rates of both EA and CSA were found to be dependent on the molecular structures of OPEs. OPEs containing electron-donating groups assemble faster than those with electron-withdrawing groups. The amount of time that the thioacetyl-terminated OPE is in the presence of the base, for removal of the acetyl group to generate the thiolate, is called the deprotection time. Deprotection times play a critical role in achieving the maximum difference in adsorption rates between the EA and the CSA. The assembly must be initiated no later than 5 min after the basic deprotection is commenced so that the thiolate concentration remains low. The difference in the adsorption rates between EA and CSA might enable selective deposition of certain OPEs onto specific electrodes.  相似文献   
34.
The acid-catalyzed condensation chemistry of simple amides and aldehydes provides a highly prolific source of diverse reactants for irreversible follow-up reactions. Amide-aldehyde mixtures have been successfully employed in multicomponent syntheses of N-acyl alpha-amino acids (via palladium-catalyzed amidocarbonylation) and various cyclohexene, cyclohexadiene, and benzene derivatives (via the amide-aldehyde-dienophile (AAD) reaction).  相似文献   
35.
Combining analytical and theoretical methods, we present a detailed study of a heteropolytungstate cluster encapsulated in a shell of dendritically branching surfactants, namely (C(52)H(60)NO(12))(12)[(Mn(H(2)O))(3)(SbW(9)O(33))(2)], 3. This novel surfactant-encapsulated cluster (SEC) self-assembles spontaneously from polyoxometalate-containing solutions treated with a stoichiometric amount of dendrons. Compound 3 exhibits a discrete supramolecular architecture in which a single polyoxometalate anion resides in a compact shell of dendrons. Our approach attempts to combine the catalytic activity of polyoxometalates with the steric properties of tailored dendritic surfactants into size-selective catalytic systems. The structural characterization of the SEC is based on analytical ultracentrifugation (AUC) and small-angle neutron scattering (SANS). The packing arrangement of dendrons at the cluster surface is gleaned from molecular dynamics (MD) simulations, which suggests a highly porous shell structure due to the dynamic formation of internal clefts and cavities. From analysis of the MD trajectory of 3, a theoretical neutron-scattering function is derived that is in good agreement with experimental SANS data. Force field parameters used in MD simulations are partially derived from a quantum mechanical geometry optimization of [(Zn(H(2)O))(3)(SbW(9)O(33))(2)](12)(-), 2b, at the density functional theory (DFT) level. DFT calculations are corroborated by X-ray structure analysis of Na(6)K(6)[(Zn(H(2)O))(3)(SbW(9)O(33))(2)].23H(2)O, which is isostructural with the catalytically active Mn derivative 2a. The combined use of theoretical and analytical methods aims at rapidly prototyping smart catalysts ("dendrizymes"), which are structurally related to naturally occurring metalloproteins.  相似文献   
36.
37.
38.
39.
Organic functionalization of carbon nanotubes   总被引:11,自引:0,他引:11  
A very general and versatile method for functionalizing different types of carbon nanotubes is described, using the 1,3-dipolar cycloaddition of azomethine ylides. Approximately one organic group per 100 carbon atoms of the nanotube is introduced, to yield remakably soluble bundles of nanotubes, as seen in transmission electron micrographs. The solubilization of the nanotubes generates a novel, interesting class of materials, which combines the properties of the nanotubes and the organic moiety, thus offering new opportunities for applications in materials science, including the preparation of nanocomposites.  相似文献   
40.
Nitrile hydratase (NHase) is an iron-containing metalloenzyme that converts nitriles to amides. The mechanism by which this biochemical reaction occurs is unknown. One mechanism that has been proposed involves nucleophilic attack of an Fe-bound nitrile by water (or hydroxide). Reported herein is a five-coordinate model compound ([Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+)) containing Fe(III) in an environment resembling that of NHase, which reversibly binds a variety of nitriles, alcohols, amines, and thiocyanate. XAS shows that five-coordinate [Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+) reacts with both methanol and acetonitrile to afford a six-coordinate solvent-bound complex. Competitive binding studies demonstrate that MeCN preferentially binds over ROH, suggesting that nitriles would be capable of displacing the H(2)O coordinated to the iron site of NHase. Thermodynamic parameters were determined for acetonitrile (DeltaH = -6.2(+/-0.2) kcal/mol, DeltaS = -29.4(+/-0.8) eu), benzonitrile (-4.2(+/-0.6) kcal/mol, DeltaS = -18(+/-3) eu), and pyridine (DeltaH = -8(+/-1) kcal/mol, DeltaS = -41(+/-6) eu) binding to [Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+) using variable-temperature electronic absorption spectroscopy. Ligand exchange kinetics were examined for acetonitrile, iso-propylnitrile, benzonitrile, and 4-tert-butylpyridine using (13)C NMR line-broadening analysis, at a variety of temperatures. Activation parameters for ligand exchange were determined to be DeltaH(+ +) = 7.1(+/-0.8) kcal/mol, DeltaS(+ +) = -10(+/-1) eu (acetonitrile), DeltaH(+ +) = 5.4(+/-0.6) kcal/mol, DeltaS(+ +) = -17(+/-2) eu (iso-propionitrile), DeltaH(+ +) = 4.9(+/-0.8) kcal/mol, DeltaS(+ +) = -20(+/-3) eu (benzonitrile), and DeltaH(+ +) = 4.7(+/-1.4) kcal/mol DeltaS(+ +) = -18(+/-2) eu (4-tert-butylpyridine). The thermodynamic parameters for pyridine binding to a related complex, [Fe(III)(S(2)(Me2)N(3)(Pr,Pr))](+) (DeltaH = -5.9(+/-0.8) kcal/mol, DeltaS = -24(+/-3) eu), are also reported, as well as kinetic parameters for 4-tert-butylpyridine exchange (DeltaH(+ +) = 3.1(+/-0.8) kcal/mol, DeltaS(+ +) = -25(+/-3) eu). These data show for the first time that, when it is contained in a ligand environment similar to that of NHase, Fe(III) is capable of forming a stable complex with nitriles. Also, the rates of ligand exchange demonstrate that low-spin Fe(III) in this ligand environment is more labile than expected. Furthermore, comparison of [Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+) and [Fe(III)(S(2)(Me2)N(3)(Pr,Pr))](+) demonstrates how minor distortions induced by ligand constraints can dramatically alter the reactivity of a metal complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号