首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   7篇
  国内免费   7篇
化学   275篇
力学   15篇
数学   20篇
物理学   46篇
  2023年   1篇
  2022年   8篇
  2021年   20篇
  2020年   18篇
  2019年   8篇
  2018年   20篇
  2017年   12篇
  2016年   31篇
  2015年   15篇
  2014年   29篇
  2013年   61篇
  2012年   23篇
  2011年   22篇
  2010年   9篇
  2009年   17篇
  2008年   15篇
  2007年   20篇
  2006年   7篇
  2005年   9篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有356条查询结果,搜索用时 0 毫秒
91.
92.
In this study, an organic conjugated molecule, 4,4′-[ethane-1,2-diylidenedi(nitrilo)] dibenzenthiol designed and is proposed as a molecular wire. Structural and electronic responses of this aromatic molecular wire to the static electric field with intensities −1.6 × 10−2 to +1.6 × 10−2 a.u., are studied using the DFT-B3LYP/6-31G* level of theory. Natural bond orbital atomic charge analysis shows that the imposition of static external electric field induces polarization—localization of charge on the two ends of molecule, especially on considered terminal contact sulfur atoms. The frontier molecular orbitals (MOs) energy levels including the highest occupied MO (HOMO) and the lowest unoccupied MO (LUMO) and the HOMO–LUMO gap (HLG) values are modified by the static electric field as well. The electric dipole moment and polarizability of the proposed molecular wire under the studied electric field strengths are considerably increased. The current–voltage characteristic curve is estimated for the proposed molecular wire.  相似文献   
93.
In this paper we define the module topological center of the second dual $\mathcal{A}^{**}$ of a Banach algebra $\mathcal{A}$ which is a Banach $\mathfrak{A}$ -module with compatible actions on another Banach algebra $\mathfrak{A}$ . We calculate the module topological center of ? 1(S)**, as an ? 1(E)-module, for an inverse semigroup S with an upward directed set of idempotents E. We also prove that ? 1(S)** is ? 1(E)-module amenable if and only if an appropriate group homomorphic image of S is finite.  相似文献   
94.
Fractional Brusselator reaction-diffusion system (BRDS) is used for modeling of specific chemical reaction-diffusion processes. It may be noted that numerous models in nonlinear science are defined by fractional differential equations (FDEs) in which an unknown function appears under the operation of a fractional-order derivative. Even though many researchers have studied the applicability and practicality of this model, the analytical approach of this model is rarely found in the literature. In this investigation, a novel semi-analytical technique called fractional reduced differential transform method (FRDTM) has been applied to solve the present model, which is characterized by the time-fractional derivative (FD). Obtained outcomes are compared with the solution of other existing methods for a particular case. Also, the convergence analysis of this model has been studied here.  相似文献   
95.
In this paper, we examine the interacting dark energy model in f(T) cosmology. We assume dark energy as a perfect fluid and choose a specific cosmologically viable form f(T) = ????T. We show that there is one attractor solution to the dynamical equation of f(T) Friedmann equations. Further we investigate the stability in phase space for a general f(T) model with two interacting fluids. By studying the local stability near the critical points, we show that the critical points lie on the sheet u* = (c ? 1)v* in the phase space, spanned by coordinates (u, v, ??, T). From this critical sheet, we conclude that the coupling between the dark energy and matter c ?? (?2, 0).  相似文献   
96.
Younesian  Davood 《Nonlinear dynamics》2018,93(3):1407-1419
Nonlinear Dynamics - Dynamic behavior of a nonlinear composite beam under the action of acoustic incident waves is analyzed in this paper. Frequency responses are obtained in primary resonance...  相似文献   
97.
The (Z)-4-(phenylamino) pent-3-en-2-one (PAPO) was synthesised applying carbon-based solid acid and described by experimental techniques. Calculated results reveal that its keto-amine form is more stable than its enol-imine form. A relaxed potential energy surface scan has been accomplished based on the optimised geometry of NH tautomeric form to depict the potential energy barrier related to intramolecular proton transfer. The spectroscopic results and theoretical calculations demonstrate that the intramolecular hydrogen bonding strength of PAPO is stronger than that in 4-amino-3-penten-2-one)APO(. In addition, molecular electrostatic potential, total and partial density of stats (TDOS, PDOS) and non-linear optical properties of the compound were studied using same theoretical calculations. Our calculations show that the title molecule has the potential to be used as molecular switch.  相似文献   
98.
99.
Uniform CeO2 nanoparticles were synthesized via a facile sonochemical reaction between ceric ammonium nitrate and ammonia. Nanoparticles were synthesized via a surfactant free reaction at room temperature in solvent of water. Products were characterized using X-ray diffraction, scanning electron microscopy, photoluminescence (PL) spectroscopy, and energy dispersive X-ray analysis. The effect of different parameters such as precursor, power of pulsation, surfactant and reaction time on the morphology of the products was investigated. It was found that the as-obtained CeO2 nanoparticles exhibit a strong PL peak at 381 nm at room temperature that can be ascribed to the high level transition in the CeO2 semiconductor. The photocatalytic behavior of CeO2 nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. The results show that CeO2 nanoparticles are promising materials with excellent performance in photocatalytic applications.  相似文献   
100.
Reductive amination a variety of aldehydes and anilines to their corresponding secondary amines were carried out with NaBH4/B(OH)3 and NaBH4/Al(OH)3 as new reducing systems in CH3CN at room temperature in high to excellent yields of products (90‐96%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号