首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
化学   49篇
力学   1篇
数学   9篇
物理学   3篇
  2022年   1篇
  2021年   9篇
  2020年   8篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2013年   3篇
  2012年   10篇
  2011年   5篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2004年   2篇
  2001年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
31.
The purification of immunoglobulin G (IgG) from human plasma was performed by using a novel metal-chelated adsorbent with nano size. The non-porous nanoparticles were produced by surfactant free emulsion polymerization of ethylene glycol dimethacrylate (EDMA) and 2-methacryloylamidohistidine (MAH). Then, Cu(II) ions were chelated on the nanoparticles. The nano-poly(EDMA-MAH) nanoparticles were characterized by Fourier transform infrared, scanning electron microscope, atomic force microscope and elemental analysis. The non-porous nanoparticles were spherical form and have 100?C250?nm size distribution. The maximum IgG adsorption capacity of the Cu(II) chelated nanoparticles was found to be 463?mg/g polymer at pH 7.0 in HEPES buffer. Desorption of IgG was performed by 1.0?M NaCl and desorption rate was found to be 97?%. IgG was obtained from human plasma with purity of 94?% (up to 578?mg/g polymer). The non-porous nanoparticles allowed one-step purification of IgG from human plasma.  相似文献   
32.
In this paper, we find bounds on the distribution of the maximum loss of fractional Brownian motion with H1/2 and derive estimates on its tail probability. Asymptotically, the tail of the distribution of maximum loss over [0,t] behaves like the tail of the marginal distribution at time t.  相似文献   
33.
The formation of iridium clusters from supported mononuclear iridium complexes in H(2) at 300 K and 1 bar was investigated by spectroscopy and atomic-resolution scanning transmission electron microscopy. The first steps of cluster formation from zeolite-supported Ir(C(2)H(4))(2) complexes are triggered by the activation of H(2) and the formation of iridium hydride, accompanied by the breaking of iridium-support bonds. This reactivity can be controlled by the choice of ligands on the iridium, which include the support.  相似文献   
34.
Recent advances in clean, sustainable energy sources such as wind and solar have enabled significant cost improvements, yet their inherent intermittency remains a considerable challenge for year-round reliability demanding the need for grid-scale energy storage. Nonaqueous redox flow batteries (NRFBs) have the potential to address this need, with attractive attributes such as flexibility to accommodate long- and short-duration storage, separately scalable energy and power ratings, and improved safety profile over integrated systems such as lithium-ion batteries. Currently, the low-solubility of NRFB electrolytes fundamentally limits their energy density. However, synthetically exploring the large chemical and parameter space of NRFB active materials is not only costly but also intractable. Here, we report a computational framework, coupled with experimental validation, designed to predict the solubility trends of electrolytes, incorporating both the lattice and solvation free energies. We reveal that lattice free energy, which has previously been neglected, has a significant role in tuning electrolyte solubility, and that solvation free energies alone is insufficient. The desymmetrization of the alkylammonium cation leading to short-chain, asymmetric cations demonstrated a modest increase in solubility, which can be further explored for NRFB electrolyte development and optimization. The resulting synergistic computational–experimental approach provides a cost-effective strategy in the development of high-solubility active materials for high energy density NRFB systems.

Active-material solubility is critical in determining NRFB energy density, yet a predictive model accounting for solid-state cohesion energy has remained elusive. Herein we present such, based on an empirically calibrated computational framework.  相似文献   
35.
A fast and simple micellar electrokinetic capillary chromatographic method was developed for the analysis of piribedil in pharmaceutical formulations. The effects of buffer concentration, buffer pH, sodium dodecyl sulphate (SDS) concentration, organic modifier, applied voltage and injection time were investigated. Optimum results were obtained with a 50 mM borate buffer at pH 8.0 containing 50 mM SDS by using a fused silica capillary (50 m internal diameter, 72 cm effective length). The sample was injected hydrodynamically for 4 s at 50 mbar pressure and the applied voltage was +30 kV. The detection wavelength was set at 205 nm. Diflunisal was used as an internal standard. The analysis was performed at 25 °C and the total run time was 14 min. The method was suitably validated with respect to linearity range, limit of detection and quantification, precision, accuracy, specificity and robustness. The linear calibration range was 5–100 g mL–1 and the limit of detection was determined as 1 g mL–1. The method developed was successfully applied to the determination of piribedil in pharmaceutical formulations. The results were compared with a spectrophotometric method reported in the literature and no significant difference was found statistically.  相似文献   
36.
Journal of Theoretical Probability - Path decomposition is performed to characterize the law of the pre-/post-supremum, post-infimum and the intermediate processes of a spectrally negative...  相似文献   
37.
Zeolite Hβ- and γ-Al(2)O(3)-supported mononuclear iridium complexes were synthesized by the reaction of Ir(C(2)H(4))(2)(acac) (acac is acetylacetonate) with each of the supports. The characterization of the surface species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies demonstrated the removal of acac ligands during chemisorption, leading to the formation of essentially isostructural Ir(C(2)H(4))(2) complexes anchored to each support by two Ir-O(support) bonds. Atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) images confirm the spectra, showing only isolated Ir atoms on the supports with no evidence of iridium clusters. These samples, together with previously reported Ir(C(2)H(4))(2) complexes on zeolite HY, zeolite HSSZ-53, and MgO supports, constitute a family of isostructural supported iridium complexes. Treatment with CO led to the replacement of the ethylene ligands on iridium with CO ligands, and the ν(CO) frequencies of these complexes and white line intensities in the X-ray absorption spectra at the Ir L(III) edge show that the electron density on iridium increases in the following order on these supports: zeolite HY < zeolite Hβ < zeolite HSSZ-53 ? γ-Al(2)O(3) < MgO. The IR spectra of the iridium carbonyl complexes treated in flowing C(2)H(4) show that the CO ligands were replaced by C(2)H(4), with the average number of C(2)H(4) groups per Ir atom increasing as the amount of iridium was increasingly electron-deficient. In contrast to the typical supported catalysts incorporating metal clusters or particles that are highly nonuniform, the samples reported here, incorporating uniform isostructural iridium complexes, provide unprecedented opportunities for a molecular-level understanding of how supports affect the electronic properties, reactivities, and catalytic properties of supported metal species.  相似文献   
38.
Unexpected yet highly remarkable and intriguing observations of the polymer-enhanced electro-catalytic activity of the Pt nanoparticles for electro-oxidations of both methanol and formic acid were reported. In situ FTIR investigation suggests strongly that the observed activity enhancements are highly likely due to the PVP-induced additional reaction pathways. These observations may open up a new paradigm of research in which the protecting/stabilizing organic ligands can now be incorporated as an advantageous part and/or a finer catalytic activity tuner of a nanocatalytic system.  相似文献   
39.
We study a stochastic programming approach to multicriteria multi-period portfolio optimization problem. We use a Single Index Model to estimate the returns of stocks from a market-representative index and a random walk model to generate scenarios on the possible values of the index return. We consider expected return, Conditional Value at Risk and liquidity as our criteria. With stocks from Istanbul Stock Exchange, we make computational studies for the two and three-criteria cases. We demonstrate the tradeoffs between criteria and show that treating these criteria simultaneously yields meaningful efficient solutions. We provide insights based on our experiments.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号