首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   11篇
化学   86篇
晶体学   1篇
力学   2篇
数学   10篇
物理学   17篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   11篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   10篇
  2013年   4篇
  2012年   10篇
  2011年   13篇
  2010年   5篇
  2009年   6篇
  2008年   7篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有116条查询结果,搜索用时 31 毫秒
11.
Optical microscopy and transmission electron microscopy have been used to investigate the morphology of polylactide (PLA)/microfibrillated cellulose (MFC) composites prepared by: compression molding of wet-comingled MFC and PLA latex or powder, twin-screw extrusion of the wet-comingled compounds, and solvent mixing of PLA with MFC or acetylated MFC. Compression molding of wet-comingled MFC and PLA latex or powder compounds resulted in a cellular MFC network, whereas solvent-cast films showed a more uniform dispersion of MFC fibers. Somewhat lower aggregate diameters observed in the acetylated MFC were assumed to be due to decreased MFC hydrophilicity and improved chemical affinity with the PLA matrix. The MFC networks in the commingled compounds were severely disrupted after twin-screw extrusion. This confirmed the limited deformability of the networks inferred from the extensive syneresis during the initial compression molding step, and accounted for substantial losses in stiffness reinforcement by the MFC after extrusion.  相似文献   
12.
The steric effects of substituents on five-membered rings are less pronounced than those on six-membered rings because of the difference in bond angles. Thus, the regioselectivities of reactions of five-membered heteroarenes that occur with selectivities dictated by steric effects, such as the borylation of C−H bonds, have been poor in many cases. We report that the silylation of five-membered-ring heteroarenes occurs with high sterically derived regioselectivity when catalyzed by the combination of [Ir(cod)(OMe)]2 (cod=1,5-cyclooctadiene) and a phenanthroline ligand or a new pyridyl-imidazoline ligand that further increases the regioselectivity. The silylation reactions with these catalysts produce high yields of heteroarylsilanes from functionalization at the most sterically accessible C−H bonds of these rings under conditions that the borylation of C−H bonds with previously reported catalysts formed mixtures of products or products that are unstable. The heteroarylsilane products undergo cross-coupling reactions and substitution reactions with ipso selectivity to generate heteroarenes that bear halogen, aryl, and perfluoroalkyl substituents.  相似文献   
13.
Powders of three hexagonal metal-hydrides or -deuterides are found to align in 4.4–8.3 T magnetic fields used for NMR. The field-alignment is unexpected, since all three systems have very small susceptibilities, as demonstrated by sharp NMR lines. The extent of alignment runs from nearly complete to barely detectable in ZrBe2(H,D)x, LuD3, and YD3, respectively. The preferred alignment direction in ZrBe2(H,D)x is with the crystallites’ c-axis perpendicular to B, while the c-axis and B tend to be parallel in LuD3 and YD3. The susceptibilities χ|| and χ are determined from bulk magnetization measurements in aligned ZrBe2H1.4 powder. The alignment must be considered for proper analysis of NMR spectra in these and related materials.  相似文献   
14.
The discovery of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has led to the generation of aptamers from libraries of nucleic acids. Concomitantly, aptamer-target recognition and its potential biomedical applications have become a major research endeavour. Aptamers possess unique properties that make them superior biological receptors to antibodies with a plethora of target molecules. Some specific areas of opportunities explored for aptamer-target interactions include biochemical analysis, cell signalling and targeting, biomolecular purification processes, pathogen detection and, clinical diagnosis and therapy. Most of these potential applications rely on the effective immobilisation of aptamers on support systems to probe target species. Hence, recent research focus is geared towards immobilising aptamers as oligosorbents for biodetection and bioscreening. This article seeks to review advances in immobilised aptameric binding with associated successful milestones and respective limitations. A proposal for high throughput bioscreening using continuous polymeric adsorbents is also presented.  相似文献   
15.
For the first time, a novel biological affinity separating system called lipid raft stationary phase chromatography (LRSC) was developed. It was employed to screen bioactive components from Chinese gallnut, a traditional Chinese medicine (TCM). The LRSC was prepared by the addition of activated silica to Tris–HCl solution, which contains the isolated lipid rafts of U251 cells. This was followed by agitation, washing, centrifugation and then re-suspension of the residue in another Tris–HCl solution. The lipid rafts possess abundant receptor tyrosine kinase, specifically tropomyosin-related kinase A (TrkA), which is a widely researched anti-tumor drug target. Thus, TrkA provided the LRSC model with the ability to select fractions that specifically interact with it. Using a non-TrkA targeted anti-tumor drug (gemcitabine) and TrkA targeted anti-tumor drugs (lestaurtinib and gefitinib) as controls to evaluate the specific affinity of the LRSC column, the different fractions of Chinese gallnut were subjected to LRSC screening for the identification of anti-tumor components. As a result, the ether fraction of Chinese gallnut manifested desirable affinity properties. The methyl thiazolyl tetrazolium assay confirmed the anti-tumor effect of the screened ether fraction, and more importantly, the ether fraction failed woefully to exhibit its anti-proliferative activity in the presence of TrkA inhibitors (K252a and primary antibody). This further proves the selectivity of LRSC on TrkA-targeted drugs. The LRSC model has, therefore, shown to be of high efficiency and selectivity in screening bioactive components from the complex TCM extracts, thus offering an effective approach for the development of anticancer natural products.  相似文献   
16.
Metallosurfactant complexes of the type trans- [Co(DH)2(HA)X], where DH = Dimethyl glyoxime, HA = Hexadecyl amine and X = Cl, Br, I, N3 , NO2 or SCN, were synthesized and characterized by physico-chemical and spectroscopic methods. In addition, the single crystal X-ray structure of the ionic complex trans-[Co(DH)2(HA)2][Co(DH)2(I)2)] is presented. The critical micelle concentration values of the complexes in ethanol were obtained by measuring the absorption at 290 nm. Specific conductivity data (at 303–313 K) served for the evaluation of the thermodynamics of micellization ) \left( {\Updelta G^{0}_{{{\text{m}}}}, \Updelta H^{0}_{{{\text{m}}}}, \Updelta S^{0}_{\text{m}} } \right) . Steady-state photolysis, cyclic voltammetry and biological activities of the complexes were studied. The compounds were tested for antimicrobial activity.  相似文献   
17.
Three mononuclear Ni(II) complexes containing a 2-chloro-1,3-diketonate ligand and supported by the 6-Ph(2)TPA chelate, as well as analogues that lack the 2-chloro substituent on the β-diketonate ligand, have been prepared and characterized. Upon irradiation at 350 nm under aerobic conditions, complexes containing the 2-chloro-substituted ligands undergo reactions to generate products resulting from oxidative cleavage, α-cleavage, and radical-derived reactions involving the 2-chloro-1,3-diketonate ligand. Mechanistic studies suggest that the oxidative cleavage reactivity, which leads to the production of carboxylic acids, is a result of the formation of superoxide, which occurs through reaction of reduced nickel complexes with O(2). The presence of the 2-chloro substituent was found to be a prerequisite for oxidative carbon-carbon bond-cleavage reactivity, as complexes lacking this functional group did not undergo these reactions following prolonged irradiation. The approach toward investigating the oxidative reactivity of metal β-diketonate species outlined herein has yielded results of relevance to the proposed mechanistic pathways of metalloenzyme-catalyzed β-diketonate oxidative cleavage reactions.  相似文献   
18.
Microscale metal-organic frameworks (MOFs) were synthesized from photoactive Ru(II)-bpy building blocks with strong visible light absorption and long-lived triplet metal-to-ligand charge transfer ((3)MLCT) excited states. These MOFs underwent efficient luminescence quenching in the presence of either oxidative or reductive quenchers. Up to 98% emission quenching was achieved with either an oxidative quencher (1,4-benzoquinone) or a reductive quencher (N,N,N',N'-tetramethylbenzidine), as a result of rapid energy migration over several hundred nanometers followed by efficient electron transfer quenching at the MOF/solution interface. The photoactive MOFs act as an excellent light-harvesting system by combining intraframework energy migration and interfacial electron transfer quenching.  相似文献   
19.
The mononuclear nickel(II) enolate complex [(6-Ph(2)TPA)Ni(PhC(O)C(OH)C(O)Ph]ClO(4) (I) was the first reactive model complex for the enzyme/substrate (ES) adduct in nickel(II)-containing acireductone dioxygenases (ARDs) to be reported. In this contribution, the mechanism of its O(2)-dependent aliphatic carbon-carbon bond cleavage reactivity was further investigated. Stopped-flow kinetic studies revealed that the reaction of I with O(2) is second-order overall and is ~80 times slower at 25 °C than the reaction involving the enolate salt [Me(4)N][PhC(O)C(OH)C(O)Ph]. Computational studies of the reaction of the anion [PhC(O)C(OH)C(O)Ph](-) with O(2) support a hydroperoxide mechanism wherein the first step is a redox process that results in the formation of 1,3-diphenylpropanetrione and HOO(-). Independent experiments indicate that the reaction between 1,3-diphenylpropanetrione and HOO(-) results in oxidative aliphatic carbon-carbon bond cleavage and the formation of benzoic acid, benzoate, and CO:CO(2) (~12:1). Experiments in the presence of a nickel(II) complex gave a similar product distribution, albeit benzil [PhC(O)C(O)Ph] is also formed, and the CO:CO(2) ratio is ~1.5:1. The results for the nickel(II)-containing reaction match those found for the reaction of I with O(2) and provide support for a trione/HOO(-) pathway for aliphatic carbon-carbon bond cleavage. Overall, I is a reasonable structural model for the ES adduct formed in the active site of Ni(II)ARD. However, the presence of phenyl appendages at both C(1) and C(3) in the [PhC(O)C(OH)C(O)Ph](-) anion results in a reaction pathway for O(2)-dependent aliphatic carbon-carbon bond cleavage (via a trione intermediate) that differs from that accessible to C(1)-H acireductone species. This study, as the first detailed investigation of the O(2) reactivity of a nickel(II) enolate complex of relevance to Ni(II)ARD, provides insight toward understanding the chemical factors involved in the O(2) reactivity of metal acireductone species.  相似文献   
20.
The structure of polyacrylamide gels was studied using proton spin–lattice relaxation and PFG diffusion methods. Polyacrylamide gels, with total polymer concentrations ranging from 0.25 to 0.35 g/ml and crosslinker concentrations from 0 to 10% by weight, were studied. The data showed no effect of the crosslinker concentration on the diffusion of water molecules. The Ogston–Morris and Mackie–Meares models fit the general trends observed for water diffusion in gels. The diffusion coefficients from the volume averaging method also fit the data, and this theory was able to account for the effects of water-gel interactions that are not accounted for in the other two theories. The averaging theory also did not require the physically unrealistic assumption, required in the other two theories, that the acrylamide fibers are of similar size to water molecules. Contrary to the diffusion data,T1relaxation measurements showed a significant effect of crosslinker concentration on the relaxation of water in gels. The model developed using the Bloch equations and the volume averaging method described the effects of water adsorption on the gel medium on both the diffusion coefficients and the relaxation measurements. In the proposed model the gel medium was assumed to consist of three phases (i.e., bulk water, uncrosslinked acrylamide fibers, and a bisacrylamide crosslinker phase). The effects of the crosslinker concentration were accounted for by introducing the proton partition coefficient,Keq, between the bulk water and crosslinker phase. The derived relaxation equations were successful in fitting the experimental data. The partition coefficient,Keq, decreased significantly as the crosslinker concentration increased from 5 to 10% by weight. This trend is consistent with the idea that bisacrylamide tends to form hydrophobic regions with increasing crosslinker concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号