首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1002篇
  免费   42篇
  国内免费   7篇
化学   785篇
晶体学   16篇
力学   13篇
数学   94篇
物理学   143篇
  2022年   4篇
  2021年   10篇
  2020年   21篇
  2019年   24篇
  2018年   12篇
  2017年   13篇
  2016年   17篇
  2015年   20篇
  2014年   25篇
  2013年   59篇
  2012年   69篇
  2011年   73篇
  2010年   45篇
  2009年   32篇
  2008年   63篇
  2007年   58篇
  2006年   51篇
  2005年   64篇
  2004年   45篇
  2003年   39篇
  2002年   41篇
  2001年   13篇
  2000年   18篇
  1999年   15篇
  1998年   13篇
  1997年   10篇
  1996年   15篇
  1995年   5篇
  1994年   12篇
  1993年   12篇
  1992年   3篇
  1989年   6篇
  1988年   3篇
  1987年   5篇
  1985年   3篇
  1984年   12篇
  1983年   3篇
  1982年   10篇
  1981年   7篇
  1980年   10篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1976年   14篇
  1975年   8篇
  1974年   7篇
  1973年   21篇
  1972年   7篇
  1971年   3篇
  1957年   3篇
排序方式: 共有1051条查询结果,搜索用时 15 毫秒
991.
Let be a bounded region in R$sup:n$esup: 2. with C$sup:2$esup: boundary and conductivity ggr;Suppose that some region D CC may have been replaced with a material which has a differing C$sup:2$esup: conductivity profile. We show that by applying an appropriate current flux on and measuring the resulting potential on an open subset one can "detect" the presence of the region D, that is. the potentials induced on when D is present versus absent must differ. Moreover. if D and its conductivity are known to satisfy certain a priori restrictions, one can assert that the potentials induced on must differ by a fixed aount which does not depend on the domain D or its conductivity.  相似文献   
992.
Electron-ion recombination in a laser-induced electron recollision is of fundamental importance as the underlying mechanism responsible for the generation of high-harmonic radiation and hence for the production of attosecond pulse trains in the extreme ultraviolet and soft x-ray spectral regions. By using an ion beam target, remotely prepared to be partially in long-lived excited states, the recombination process has for the first time been directly observed and studied.  相似文献   
993.
Fabry-Perot InAs quantum-dot lasers grown on GaAs substrates are mutually coupled with a delay of several nanoseconds. Stable phase-locked output with narrow linewidth is obtained when the frequency detuning between the two lasers is less than 4 GHz. This simple locking scheme could find application in a variety of photonics applications.  相似文献   
994.
Sn94- reacts with Pt(PPh3)4 in ethylenediamine/toluene solvent mixtures in the presence of 2,2,2-cryptand to give four different complexes: "Rudolph's complex" of proposed formula [Sn9Pt(PPh3)x]4- (2), the previously reported [Pt@Sn9Pt(PPh3)]2- ion (3), and the title complexes Pt2@Sn174- (4) and Pt@Sn9H3- (5). The use of Pt(norbornene)3 instead of Pt(PPh3)4 gives complex 4 exclusively. The structure of 4 contains two Pt atoms centered in a capsule-shaped Sn17 cage. The complex is highly dynamic in solution showing single, mutually coupled 119Sn and 195Pt NMR resonances indicative of an intramolecular liquidlike dynamic exchange process. Complex 5 has been characterized by selectively decoupled 1H, 119Sn, and 195Pt NMR experiments and shows similar liquidlike fluxionality. In addition, the H atom scrambles across the cage showing small couplings to both Sn and Pt atoms. Neither 3 nor 4 obeys Wades rules; they adopt structures more akin to the subunits in alloys such as PtSn4. The structural and chemical relevance to supported PtSn4 heterogeneous catalysts is discussed.  相似文献   
995.
A mechanistic study of intramolecular hydroamination/cyclization catalyzed by tetravalent organoactinide and organozirconium complexes is presented. A series of selectively substituted constrained geometry complexes, (CGC)M(NR2)Cl (CGC = [Me2Si(eta5-Me4C5)(tBuN)]2-; M = Th, 1-Cl; U, 2-Cl; R = SiMe3; M = Zr, R = Me, 3-Cl) and (CGC)An(NMe2)OAr (An = Th, 1-OAr; An = U, 2-OAr), has been prepared via in situ protodeamination (complexes 1-2) or salt metathesis (3-Cl) in high purity and excellent yield and is found to be active precatalysts for intramolecular primary and secondary aminoalkyne and aminoalkene hydroamination/cyclization. Substrate reactivity trends, rate laws, and activation parameters for cyclizations mediated by these complexes are virtually identical to those of more conventional (CGC)MR2 (M = Th, R = NMe2, 1; M = U, R = NMe2, 2; M = Zr, R = Me, 3), (Me2SiCp' '2)UBn2 (Cp' ' = eta5-Me4C5; Bn = CH2Ph, 4), Cp'2AnR2 (Cp' = eta5-Me5C5; R = CH2SiMe3; An = Th, 5, U, 6), and analogous organolanthanide complexes. Deuterium KIEs measured at 25 degrees C in C6D6 for aminoalkene D2NCH2C(CH3)2CH2CHCH2 (11-d2) with precatalysts 2 and 2-Cl indicate that kH/kD = 3.3(5) and 2.6(4), respectively. Together, the data provide strong evidence in these systems for turnover-limiting C-C insertion into an M-N(H)R sigma-bond in the transition state. Related complexes (Me2SiCp' '2)U(Bn)(Cl) (4-Cl) and Cp'2An(R)(Cl) (R = CH2(SiMe3); An = Th, 5-Cl; An = U, 6-Cl) are also found to be effective precatalysts for this transformation. Additional arguments supporting M-N(H)R intermediates vs M=NR intermediates are presented.  相似文献   
996.
Using the layer-by-layer (LbL) assembly technique, we create a polymer-clay structure from a unique combination of LbL materials: poly(ethylene imine), Laponite clay, and poly(ethylene oxide). This trilayer LbL structure is assembled using a combination of hydrogen bonding and electrostatic interactions. The films were characterized using ellipsometry, profilometry, X-ray photon spectroscopy, atomic force microscopy, scanning electron microscopy, wide-angle X-ray diffraction, grazing-incidence small-angle X-ray scattering, and electrochemical impedance spectroscopy (EIS). We observe a layered, anisotropic structure, which resulted in in-plane ion transport 100 times faster than cross-plane at 0% relative humidity. This study represents a first application of EIS in determining anisotropic ion transport in LbL assemblies and its correlation to structural anisotropy.  相似文献   
997.
M-DNA (a metal complex of DNA with millimolar concentrations of Zn2+, Co2+, or Ni2+ and basic pH) has been proposed to undergo electron transfer over long distances along the helix and has generated interest as a potential building block for nanoelectronics. We show that DNA aggregates form under solvent conditions favorable for M-DNA (millimolar zinc and pH = 8.6) by fluorescence correlation spectroscopy. We have performed steady-state F?rster resonance energy transfer (FRET) experiments with DNA oligomers conjugated with 6-carboxyfluorescein and tetramethylrhodamine to the opposite ends of double-stranded DNA (dsDNA) molecules. Enhanced acceptor emission is observed for distances larger than expected for identical DNA molecules with no zinc. To avoid intermolecular FRET, the fluorescently labeled dsDNA is diluted with a 100-fold excess of unlabeled dsDNA. The intramolecular FRET efficiency increases 25-fold for a 30-mer doubly labeled duplex DNA molecule upon addition of millimolar concentrations of zinc ions. Without zinc, this oligomer has less than 1% FRET efficiency. This dramatic increase in the FRET efficiency points to either significant changes in the F?rster radius or fraying of the ends of the DNA helices. The latter hypothesis is supported by our experiments with a 9-mer that show dissociation of the duplex by zinc ions.  相似文献   
998.
A previous study, using capillary electrophoresis (CE) [J. Am. Chem. Soc. 2008, 130, 17384-17393], reported that six discrete complexes of ubiquitin (UBI) and sodium dodecyl sulfate (SDS) form at different concentrations of SDS along the pathway to unfolding of UBI in solutions of SDS. One complex (which formed between 0.8 and 1.8 mM SDS) consisted of native UBI associated with approximately 11 molecules of SDS. The current study used CE and (15)N/(13)C-(1)H heteronuclear single quantum coherence (HSQC) NMR spectroscopy to identify residues in folded UBI that associate specifically with SDS at 0.8-1.8 mM SDS, and to correlate these associations with established biophysical and structural properties of this well-characterized protein. The ability of the surface charge and hydrophobicity of folded UBI to affect the association with SDS (at concentrations below the CMC) was studied, using CE, by converting lys-ε-NH(3)(+) to lys-ε-NHCOCH(3) groups. According to CE, the acetylation of lysine residues inhibited the binding of 11 SDS ([SDS] < 2 mM) and decreased the number of complexes of composition UBI-(NHAc)(8)·SDS(n) that formed on the pathway of unfolding of UBI-(NHAc)(8) in SDS. A comparison of (15)N-(1)H HSQC spectra at 0 mM and 1 mM SDS with calculated electrostatic surface potentials of folded UBI (e.g., solutions to the nonlinear Poisson-Boltzmann (PB) equation) suggested, however, that SDS binds preferentially to native UBI at hydrophobic residues that are formally neutral (i.e., Leu and Ile), but that have positive electrostatic surface potential (as predicted from solutions to nonlinear PB equations); SDS did not uniformly interact with residues that have formal positive charge (e.g., Lys or Arg). Cationic functional groups, therefore, promote the binding of SDS to folded UBI because these groups exert long-range effects on the positive electrostatic surface potential (which extend beyond their own van der Waals radii, as predicted from PB theory), and not because cationic groups are necessarily the site of ionic interactions with sulfate groups. Moreover, SDS associated with residues in native UBI without regard to their location in α-helix or β-sheet structure (although residues in hydrogen-bonded loops did not bind SDS). No correlation was observed between the association of an amino acid with SDS and the solvent accessibility of the residue or its rate of amide H/D exchange. This study establishes a few (of perhaps several) factors that control the simultaneous molecular recognition of multiple anionic amphiphiles by a folded cytosolic protein.  相似文献   
999.
The design and synthesis of a β-turn mimetic library as a key component of a small-molecule library targeting the major recognition motifs involved in protein-protein interactions is described. Analysis of a geometric characterization of 10,245 β-turns in the protein data bank (PDB) suggested that trans-pyrrolidine-3,4-dicarboxamide could serve as an effective and synthetically accessible library template. This was confirmed by initially screening select compounds against a series of peptide-activated GPCRs that recognize a β-turn structure in their endogenous ligands. This validation study was highlighted by identification of both nonbasic and basic small molecules with high affinities (K(i) = 390 and 23 nM, respectively) for the κ-opioid receptor (KOR). Consistent with the screening capabilities of collaborators and following the design validation, the complete library was assembled as 210 mixtures of 20 compounds, providing a total of 4200 compounds designed to mimic all possible permutations of 3 of the 4 residues in a naturally occurring β-turn. Unique to the design and because of the C(2) symmetry of the template, a typical 20 × 20 × 20-mix (8000 compounds prepared as 400 mixtures of 20 compounds) needed to represent 20 variations in the side chains of three amino acid residues reduces to a 210 × 20-mix, thereby simplifying the library synthesis and subsequent screening. The library was prepared using a solution-phase synthetic protocol with liquid-liquid or liquid-solid extractions for purification and conducted on a scale that insures its long-term availability for screening campaigns. Screening the library against the human opioid receptors (KOR, MOR, and DOR) identified not only the activity of library members expected to mimic the opioid receptor peptide ligands but also additional side-chain combinations that provided enhanced receptor binding selectivities (>100-fold) and affinities (as low as K(i) = 80 nM for KOR). A key insight to emerge from the studies is that the phenol of Tyr in endogenous ligands bearing the H-Tyr-Pro-Trp/Phe-Phe-NH(2) β-turn is important for MOR binding but may not be important for KOR (accommodated, but not preferred) and that the resulting selectivity for KOR observed with its removal can be increased by replacing the phenol OH with a chlorine substituent, further enhancing KOR affinity.  相似文献   
1000.
Conjugated rod-coil diblock copolymers self-assemble due to a balance of liquid crystalline (rod-rod) and enthalpic (rod-coil) interactions. Previous work has shown that while classical block copolymers self-assemble into a wide variety of nanostructures, when rod-rod interactions dominate self-assembly in rod-coil block copolymers, lamellar structures are preferred. Here, it is demonstrated that other, potentially more useful, nanostructures can be formed when these two interactions are more closely balanced. In particular, hexagonally packed polylactide (PLA) cylinders embedded in a semiconducting poly(3-alkylthiophene) (P3AT) matrix can be formed. This microstructure has been long-sought as it provides an opportunity to incorporate additional functionalities into a majority phase nanostructured conjugated polymer, for example in organic photovoltaic applications. Previous efforts to generate this phase in polythiophene-based block copolymers have failed due to the high driving force for P3AT crystallization. Here, we demonstrate that careful design of the P3AT moiety allows for a balance between crystallization and microphase separation due to chemical dissimilarity between copolymer blocks. In addition to hexagonally packed cylinders, P3AT-PLA block copolymers form nanostructures with long-range order at all block copolymer compositions. Importantly, the conjugated moiety of the P3AT-PLA block copolymers retains the crystalline packing structure and characteristic high time-of-flight charge transport of the homopolymer polythiophene (μ(h) ~10(-4) cm(2) V(-1) s(-1)) in the confined geometry of the block copolymer domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号