首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2402篇
  免费   70篇
  国内免费   2篇
化学   1377篇
晶体学   25篇
力学   66篇
数学   209篇
物理学   797篇
  2021年   17篇
  2020年   20篇
  2019年   20篇
  2016年   65篇
  2015年   42篇
  2014年   38篇
  2013年   92篇
  2012年   69篇
  2011年   85篇
  2010年   71篇
  2009年   58篇
  2008年   95篇
  2007年   99篇
  2006年   91篇
  2005年   59篇
  2004年   63篇
  2003年   51篇
  2002年   57篇
  2001年   66篇
  2000年   55篇
  1999年   53篇
  1998年   28篇
  1997年   31篇
  1996年   39篇
  1995年   38篇
  1994年   32篇
  1993年   36篇
  1992年   55篇
  1991年   30篇
  1990年   49篇
  1989年   30篇
  1988年   41篇
  1987年   23篇
  1986年   35篇
  1985年   45篇
  1984年   34篇
  1983年   31篇
  1982年   30篇
  1981年   29篇
  1980年   44篇
  1979年   36篇
  1978年   27篇
  1977年   40篇
  1976年   24篇
  1975年   29篇
  1974年   22篇
  1973年   22篇
  1971年   22篇
  1967年   26篇
  1966年   21篇
排序方式: 共有2474条查询结果,搜索用时 312 毫秒
101.
We report new measurements of the absolute electron-impact double ionization cross sections for Ar and Kr and of the ratios of double-to-single ionization for impact energies from threshold to 200 eV using the crossed electron-beam — fast-atom-beam technique. The work was motivated by the recently highlighted spread of about 30% in the Ar2+/Ar+ ionization cross section ratios obtained by several groups using different experimental techniques. Such a spread is inconsistent with statistical uncertainties of typically 3% or less that were quoted for the various reported ratios. A similar situation exists for Kr where the spread among the recently published Kr2+/Kr+ ionization cross section ratios is about 15%. We made an attempt to identify all potential systematic errors inherent to the fast-beam technique that could affect the measurement of cross section ratios with special emphasis on those systematic errors that could influence the detection of singly and doubly charged product ions differently. We found Ar2+/Ar+ and Kr2+/Kr+ cross section ratios of, respectively 0.066 ±0.007 and 0.087 ±0.008 at 100 eV which confirm earlier measurements using the same experimental technique. The error limits on cross sections ratios measured in our fast-beam apparatus were determined to be at least ±9% for cross section ratios of multiple-to-single ionization for the same target atom and at least ±10% for ratios of single ionization cross sections for different target species. Our error limits are dominated by systematic uncertainties of the apparatus which do not cancel when cross section ratios are measured, since the ratios are obtained under similar, but not identical experimental conditions.  相似文献   
102.
The title complex, [Li2(D2O)6][Li(C9H27SSiO3)2]2·2D2O, is the first compound with an S—M bond (M = alkali metal) within an unusual type of lithate anion, [Li(SR)2] {where R is Si[OC(CH3)3]3}. There is a centre of symmetry located in the middle of the Li2O2 ring of the cation. All Li atoms are four‐coordinate, with LiO4 (cations) and LiO2S2 (anions) cores. The singly charged [Li(SR)2] anions are well separated from the doubly charged [Li2(D2O)6]2+ cations; the distance between Li atoms from differently charged ions is greater than 5 Å. Both ion types are held within an extended network of O—D⋯O and O—D⋯S hydrogen bonds.  相似文献   
103.
Because multielement trace analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is often limited by the lack of suitable reference materials with a similar matrix composition, a novel quantification strategy using solution calibration was developed. For mass spectrometric multielement determination in geological samples a quadrupole-based LA-ICP-MS is coupled with an ultrasonic nebulizer (USN). In order to arrange matrix matching the standard solutions are nebulized with a USN during solution calibration and simultaneously a blank target (e.g. lithium borate) is ablated with a focused laser beam. The homogeneous geological samples were measured using the same experimental arrangement where a 2% nitric acid is simultaneously nebulized with the USN. Homogeneous targets were prepared from inhomogeneous geological samples by powdering, homogenizing and fusing with a lithium borate mixture in a muffle furnace at 1050 degrees C. Furthermore, a homogeneous geological glass was also investigated. The quantification of analytical results was performed by external calibration using calibration curves measured on standard solutions. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS, measured concentrations in homogeneous geological targets were also corrected with relative sensitivity coefficients (RSCs) determined using one standard solution only. The analytical results of LA-ICP-MS on various geological samples are in good agreement with the reference values and the results of other trace analytical methods. The relative standard deviation (RSD) for trace element determination (N = 6) is between 2 and 10%.  相似文献   
104.
105.
The efficiency of the photochemical ring-opening of chromenes (or benzopyrans) depends on the vibronic transition selected by the chosen excitation wavelength. In the present work, ab initio CASPT2//CASSCF calculations are used to determine the excited-state ring-opening reaction coordinate for 2H-chromene (C) and 2,2-diethyl-2H-chromene (DEC) and provide an explanation for such an unusual mode-dependent behavior. It is shown that excited-state relaxation and decay occur via a multimodal and barrierless (or nearly barrierless) reaction coordinate. In particular, the relaxation out of the Franck-Condon involves a combination of in-plane skeletal stretching and out-of-plane modes, while the second part of the reaction coordinate is dominated exclusively by a different out-of-plane mode. Population of this last mode is shown to be preparatory with respect to both C-O bond breaking and decay via an S(1)/S(0) conical intersection. The observed mode-dependent ring-opening efficiency is explained by showing that the vibrational mode corresponding to the most efficient vibronic transition has the largest projection onto the out-of-plane mode of the reaction coordinate. To support the computationally derived mechanism, we provide experimental evidence that the photochemical ring-opening reaction of 2,2-dimethyl-7,8-benzo(2H)chromene, that similarly to DEC exhibits a mode-dependent photoreaction, has a low ( approximately 1 kcal mol(-1)) activation energy barrier.  相似文献   
106.
Alkylidynephosphanes and -arsanes. I [P ≡ C? S]?[Li(dme)3]+ – Synthesis and Structure O,O′-Diethyl thiocarbonate and bis(tetrahydrofuran)-lithium bis(trimethylsilyl)phosphanide dissolved in 1,2-dimethoxyethane, react below 0°C to give ethoxy trimethylsilane and tris(1,2-dimethoxyethane-O,O′)lithium 2λ3-phosphaethynylsulfanide – [P≡C? S]? [Li(dme)3]+ – ( 1a ). Apart from bis(trimethylsilyl)sulfane or carbon oxide sulfide, dark red concentrated solutions of λ3-phosphaalkyne 1 are also obtained from reactions of carbon disulfide with bis(tetrahydrofuran)-lithium bis(trimethylsilyl)phosphanide or with the homologous lithoxy-methylidynephosphane ( 2 ) [1]. The ir spectrum shows two absorptions at 1762 and 747 cm?1 characteristic for the P≡C and C? S stretching vibrations. The nmr parameters {δ(31P) ? 121.3; δ(13C) 190.8 ppm; 1JCP 18.2 Hz} resemble much more values of diorganylamino-2λ3-phosphaalkynes than those of bis(1,2-dimethoxyethane-O,O′)lithoxy-methylidyne-phosphane ( 2a ). As found by an X-ray structure analysis (P21/c; a = 1192.6(16); b = 1239.1(19); c = 1414.8(26) pm; β = 105.91(13)° at ?100 ± 3°C; Z = 4 formula units; wR = 0.064) of pale yellow crystals (mp. + 16°C) isolated from the reaction with O,O′-diethyl thiocarbonate, the solid is built up of separate [P≡C? S]? and [Li(dme)3]+ ions. Typical bond lengths and angles are: P≡C 155.5(11); C? S 162.0(11); Li? O 206.4(17) to 220.3(20) pm; P≡C? S 178.9(7)°.  相似文献   
107.
Abstract— The 11-cis and all-trans isomers of a series of poly(ethylene glycol)-oligopeptide - Schiff bases as models for rhodopsin were synthesized and studied. Absorption data for certain of the PEG-peptide Schiff bases demonstrated that no intramolecular hydrogen-bonding (or protonation) occurs between the Schiff base and an acidic amino acid residue, as was previously thought. Photoisomerization of the 11-cis protonated and unprotonated Schiff bases were examined using both steady state and laser flash techniques. Also with 355 nm excitation (and additionally 532 nm in one case), an approximate 40% increase in quantum yield of isomerization (φ) occurred for all protonated PEG-peptide Schiff bases compared to the H+-n-butylamine counterparts (in methanol). In one case, a > 100% increase in φ was found in dichloromethane. These data show that PEG-oligopeptide Schiff bases are still further improved models for rhodopsin compared to their n-butylamine analogs.  相似文献   
108.
Metal Derivatives of Molecular Compounds. III. Molecular and Crystal Structure of Lithium bis(trimethylsilyl)phosphide · DME and of Lithium dihydrogenphosphide · DME Lithium bis(trimethylsilyl)phosphide · DME 1 prepared from tris(trimethylsilyl)-phosphine and lithium methanide [2, 4] in 1,2-dimethoxyethane
  • 1 1,2-Dimethoxyethan (DME); Tetrahydrofuran (THF); Bis[2-(dimethylamino)ethyl]methyl-amin (PMDETA).
  • , crystallizes in the orthorhombic space group Pnnn {a = 881.1(9); b = 1308.5(9); c = 1563.4(9) pm at ?120 ± 3°C; Z = 4 formula units}, lithium dihydrogenphosphide · DME 2 [10] prepared from phosphine and lithium- n -butanide in the same solvent, in P2 1 2 1 2 1 {a = 671.8(1); b = 878.6(1); c = 1332.2(2) pm at ?120 ± 3°C; Z = 4 formula units}. X-ray structure determinations (R w = 0.036/0.045) show the bis(trimethylsilyl) derivative 1 to be dimeric with a planar P? Li? P? Li ring (P? Li 256 pm; Li? P? Li 76°; P? Li? P 104°), and the dihydrogenphosphide 2 to be polymeric with a linear Li? P? Li fragment (P? Li 254 to 260 pm; Li? P? Li 177°; P? Li? P 118°). The shortened P? Si distance (221 pm) of compound 1 and the structure of the PH 2 group in 2 are discussed in detail. Lithium obtains its preferred coordination number 4 by a chelation with one molecule of 1,2-dimethoxyethane (Li? O 202 to 204 pm).  相似文献   
    109.
    To bridge the gap between laboratory-scale studies and commercial applications, mass production of high quality graphene is essential. A scalable exfoliation strategy towards the production of graphene sheets is presented that has excellent yield (ca. 75 %, 1–3 layers), low defect density (a C/O ratio of 21.2), great solution-processability, and outstanding electronic properties (a hole mobility of 430 cm2 V−1 s−1). By applying alternating currents, dual exfoliation at both graphite electrodes enables a high production rate exceeding 20 g h−1 in laboratory tests. As a cathode material for lithium storage, graphene-wrapped LiFePO4 particles deliver a high capacity of 167 mAh g−1 at 1 C rate after 500 cycles.  相似文献   
    110.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号