首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   596篇
  免费   10篇
  国内免费   3篇
化学   407篇
力学   11篇
数学   44篇
物理学   147篇
  2021年   5篇
  2020年   12篇
  2019年   5篇
  2018年   13篇
  2016年   10篇
  2015年   5篇
  2013年   16篇
  2012年   8篇
  2011年   11篇
  2010年   5篇
  2009年   9篇
  2008年   8篇
  2007年   15篇
  2006年   16篇
  2005年   11篇
  2004年   18篇
  2003年   13篇
  2002年   10篇
  2001年   8篇
  2000年   12篇
  1999年   13篇
  1998年   6篇
  1997年   9篇
  1996年   6篇
  1995年   11篇
  1994年   10篇
  1993年   14篇
  1992年   6篇
  1991年   15篇
  1989年   8篇
  1987年   9篇
  1986年   5篇
  1985年   9篇
  1984年   13篇
  1980年   7篇
  1979年   12篇
  1978年   8篇
  1975年   10篇
  1974年   5篇
  1973年   6篇
  1972年   5篇
  1971年   5篇
  1970年   7篇
  1968年   4篇
  1967年   5篇
  1963年   4篇
  1962年   19篇
  1961年   19篇
  1960年   59篇
  1959年   20篇
排序方式: 共有609条查询结果,搜索用时 500 毫秒
51.
    
Ohne Zusammenfassung  相似文献   
52.
53.
54.
55.
Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins within an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with μeV strength.  相似文献   
56.
Magnetooptical studies performed on a wide InGaAs/GaAs single quantum well indicate that optically non-active (dark) excitons with total angular momentum play the role of a reservoir for the creation of free multiparticle excitonic complexes. After analyzing the magnetic field evolution of the circularly polarized components of the low energy structure appearing in the main excitonic luminescence line we assign this feature to the excitonic trion formation. The binding energy of the excitonic trions was estimated to be of the order of 1 meV. Received: 29 October 1997 / Received in final form: 20 February 1998 / Accepted: 21 February 1998  相似文献   
57.
Semiconductor nanostructures have attracted considerable interest during the recent years in view of the potential application in quantum information processing. In particular, quantum dots have been suggested to fulfill an essential requirement for quantum computation: controllable interaction that couples two quantum dot qubits. Previous experiments on two vertically aligned quantum dots have demonstrated the formation of coupled exciton states. We show that this coupling between two In0.60Ga0.40As/GaAs quantum dots can be tuned by an electric field applied along the molecule axis. This controllable coupling in such a relatively simple configuration could be implemented in a solid-state-based quantum device.  相似文献   
58.
59.
Melt-spinning experiments were carried out at high quenching rates. Mechanical properties (elongation at break, natural draw ratio, and elastic recovery) have been measured. Significant variations of these quantities were observed when extrusion conditions were changed. This has been attributed to different states of the entanglements within the melt, which are directly transferred into the solid state. This intercorrelation between melt and solid-state properties has been substantiated in the case of rapidly cooled samples, where a poor crystallization on one side and a simultaneous good conservation of melt history on the other side are provoked.  相似文献   
60.
The preparation of GdVO4:Bi3+ ceramics is indicated. Bismuth shows a strong tendency to evaporate during the sintering process. Time-resolved emission spectroscopy shows for sufficiently low Bi3+ concentrations subsequently: blue VO 4 3– emission with a decay time corresponding to the transfer rate (106 s–1), yellow VO 4 3– –Bi3+ emission, rare-earth impurity emission and VO 4 3– –Bi3+ afterglow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号