首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1666篇
  免费   22篇
  国内免费   14篇
化学   940篇
晶体学   24篇
力学   44篇
数学   282篇
物理学   412篇
  2021年   13篇
  2020年   16篇
  2019年   15篇
  2018年   15篇
  2016年   25篇
  2015年   16篇
  2014年   22篇
  2013年   46篇
  2012年   74篇
  2011年   74篇
  2010年   51篇
  2009年   36篇
  2008年   66篇
  2007年   71篇
  2006年   70篇
  2005年   61篇
  2004年   58篇
  2003年   47篇
  2002年   52篇
  2001年   46篇
  2000年   50篇
  1999年   35篇
  1998年   22篇
  1997年   18篇
  1996年   25篇
  1995年   27篇
  1994年   34篇
  1993年   41篇
  1992年   35篇
  1991年   23篇
  1990年   28篇
  1989年   16篇
  1988年   24篇
  1987年   17篇
  1986年   19篇
  1985年   22篇
  1984年   24篇
  1983年   25篇
  1982年   22篇
  1981年   19篇
  1980年   22篇
  1979年   22篇
  1978年   18篇
  1977年   20篇
  1976年   25篇
  1975年   20篇
  1974年   28篇
  1973年   21篇
  1972年   11篇
  1967年   15篇
排序方式: 共有1702条查询结果,搜索用时 31 毫秒
991.
A numerical investigation of laminar flow over a three-dimensional backward-facing step is presented with comparisons with detailed experimental data, available in the literature, serving to validate the numerical results. The continuity constraint method, implemented via a finite element weak statement, was employed to solve the unsteady three-dimensional Navier–Stokes equations for incompressible laminar isothermal flow. Two-dimensional numerical simulations of this step geometry underestimate the experimentally determined extent of the primary separation region for Reynolds numbers Re greater than 400. It has been postulated that this disagreement between physical and computational experiments is due to the onset of three-dimensional flow near Re ≈ 400. This paper presents a full three-dimensional simulation of the step geometry for 100⩽ Re⩽ 800 and correctly predicts the primary reattachment lengths, thus confirming the influence of three-dimensionality. Previous numerical studies have discussed possible instability modes which could induce a sudden onset of three-dimensional flow at certain critical Reynolds numbers. The current study explores the influence of the sidewall on the development of three-dimensional flow for Re greater than 400. Of particular interest is the characterization of three-dimensional vortices in the primary separation region immediately downstream of the step. The complex interaction of a wall jet, located at the step plane near the sidewall, with the mainstream flow reveals a mechanism for the increasing penetration (with increasing Reynolds number) of three-dimensional flow structures into a region of essentially two-dimensional flow near the midplane of the channel. The character and extent of the sidewall-induced flow are investigated for 100⩽Re⩽ 800. © 1997 John Wiley & Sons, Ltd.  相似文献   
992.
993.
994.
995.
The chemistry of the uranyl ion ([UO2]2+) has evolved remarkably over the past few years, with unexpected reactivity observed that challenge our understanding of this ion, and of actinides in general. This review highlights some recent advances in the field, focussing on the organometallic chemistry of the uranyl moiety, which is not well developed in comparison to lower oxidation states of uranium. The use of uranyl as a catalyst is highlighted and the newly developed supramolecular chemistry is described. The uranyl oxygen atoms have been considered as inert, but recent work has shown that is not necessarily the case and is discussed herein. Finally, reduction to the [UO2]+ ion will be discussed.  相似文献   
996.
In recent years, the designer nature of ionic liquids (ILs) has driven their exploration and exploitation in countless fields among the physical and chemical sciences. A fair measure of the tremendous attention placed on these fluids has been attributed to their inherent designer nature. And yet, there are relatively few examples of reviews that emphasize this vital aspect in an exhaustive or meaningful way. In this critical review, we systematically survey the physicochemical properties of the collective library of ether- and alcohol-functionalized ILs, highlighting the impact of ionic structure on features such as viscosity, phase behavior/transitions, density, thermostability, electrochemical properties, and polarity (e.g. hydrophilicity, hydrogen bonding capability). In the latter portions of this review, we emphasize the attractive applications of these functionalized ILs across a range of disciplines, including their use as electrolytes or functional fluids for electrochemistry, extractions, biphasic systems, gas separations, carbon capture, carbohydrate dissolution (particularly, the (ligno)celluloses), polymer chemistry, antimicrobial and antielectrostatic agents, organic synthesis, biomolecular stabilization and activation, and nanoscience. Finally, this review discusses anion-functionalized ILs, including sulfur- and oxygen-functionalized analogs, as well as choline-based deep eutectic solvents (DESs), an emerging class of fluids which can be sensibly categorized as semi-molecular cousins to the IL. Finally, the toxicity and biodegradability of ether- and alcohol-functionalized ILs are discussed and cautiously evaluated in light of recent reports. By carefully summarizing literature examples on the properties and applications of oxy-functional designer ILs up till now, it is our intent that this review offers a barometer for gauging future advances in the field as well as a trigger to spur further contemplation of these seemingly inexhaustible and--relative to their potential--virtually untouched fluids. It is abundantly clear that these remarkable fluidic materials are here to stay, just as certain design rules are slowly beginning to emerge. However, in fairness, serendipity also still plays an undeniable role, highlighting the need for both expanded in silico studies and a beacon to attract bright, young researchers to the field (406 references).  相似文献   
997.
We investigate the stochastic flow shop problem with m machines and general distributions for processing times. No analytic method exists for solving this problem, so we looked instead at heuristic methods. We devised three constructive procedures with modest computational requirements, each based on approaches that have been successful at solving the deterministic counterpart. We compared the performance of these procedures experimentally on a set of test problems and found that all of them achieve near-optimal performance.  相似文献   
998.
999.
Ammonia-borane (NH(3)BH(3), AB) has garnered interest as a hydrogen storage material due to its high weight percent hydrogen content and ease of H(2) release relative to metal hydrides. As a consequence of dehydrogenation, B-N-containing oligomeric/polymeric materials are formed. The ability to control this process and dictate the identity of the generated polymer opens up the possibility of the targeted synthesis of new materials. While precious metals have been used in this regard, the ability to construct such materials using earth-abundant metals such as Fe presents a more economical approach. Four Fe complexes containing amido and phosphine supporting ligands were synthesized, and their reactivity with AB was examined. Three-coordinate Fe(PCy(3))[N(SiMe(3))(2)](2) (1) and four-coordinate Fe(DEPE)[N(SiMe(3))(2)](2) (2) yield a mixture of (NH(2)BH(2))(n) and (NHBH)(n) products with up to 1.7 equiv of H(2) released per AB but cannot be recycled (DEPE = 1,2-bis(diethylphosphino)ethane). In contrast, Fe supported by a bidentate P-N ligand (4) can be used in a second cycle to afford a similar product mixture. Intriguingly, the symmetric analogue of 4 (Fe(N-N)(P-P), 3), only generates (NH(2)BH(2))(n) and does so in minutes at room temperature. This marked difference in reactivity may be the result of the chemistry of Fe(II) vs Fe(0).  相似文献   
1000.
BphI, a pyruvate-specific class II aldolase, catalyzes the reversible carbon-carbon bond formation of 4-hydroxy-2-oxoacids up to eight carbons in length. During the aldol addition catalyzed by BphI, the S-configured stereogenic center at C4 is created via attack of a pyruvate enolate intermediate on the si face of the aldehyde carbonyl of acetaldehyde to form 4(S)-hydroxy-2-oxopentanoate. Replacement of a Leu-87 residue within the active site of the enzyme with polar asparagine and bulky tryptophan led to enzymes with no detectable aldolase activity. These variants retained decarboxylase activity for the smaller oxaloacetate substrate, which is not inhibited by excess 4-hydroxy-2-oxopentanoate, confirming the results from molecular modeling that Leu-87 interacts with the C4-methyl of 4(S)-hydroxy-2-oxoacids. Double variants L87N;Y290F and L87W;Y290F were constructed to enable the binding of 4(R)-hydroxy-2-oxoacids by relieving the steric hindrance between the 5-methyl group of these compounds and the hydroxyl substituent on the phenyl ring of Tyr-290. The resultant enzymes were shown to exclusively utilize only 4(R)- and not 4(S)-hydroxy-2-oxopentanoate as the substrate. Polarimetric analysis confirmed that the double variants are able to synthesize 4-hydroxy-2-oxoacids up to eight carbons in length, which were the opposite stereoisomer compared to those produced by the wild-type enzyme. Overall the k(cat)/K(m) values for pyruvate and aldehydes in the aldol addition reactions were affected ≤10-fold in the double variants relative to the wild-type enzyme. Thus, stereocomplementary class II pyruvate aldolases are now available to create chiral 4-hydroxy-2-oxoacid skeletons as synthons for organic reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号