首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   2篇
化学   70篇
物理学   3篇
  2023年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2012年   7篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   9篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1988年   2篇
  1985年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
71.
A revolution in modern electronics has led to the miniaturization and evolution of many portable devices, such as cellular telephones and laptop computers, since the 1980s. This has led to an increasing demand for new and compatible energy storage technologies. Furthermore, a growing awareness of pollution issues has provided a strong impetus for the science and technology community to develop alternatives with ever-higher energy densities, with the ultimate goal of being able to propel electric vehicles. Magnesium's thermodynamic properties make this metal a natural candidate for utilization as an anode in high-energy-density, rechargeable battery systems. We report herein on the results of extensive studies on magnesium anodes and magnesium insertion electrodes in nonaqueous electrolyte solutions. Novel, rechargeable nonaqueous magnesium battery systems were developed based on the research. This work had two major challenges: one was to develop electrolyte solutions with especially high anodic stability in which magnesium anodes can function at a high level of cycling efficiency; the other was to develop a cathode that can reversibly intercalate Mg ions in these electrolyte systems. The new magnesium batteries consist of Mg metal anodes, an electrolyte with a general structure of Mg(AlX(3-n)R(n)R')(2) (R',R = alkyl groups, X = halide) in ethereal solutions (e.g., tetrahydrofuran, polyethers of the "glyme" family), and Chevrel phases of MgMo(3)S(4) stoichiometry as highly reversible cathodes. With their practical energy density expected to be >60 Wh/Kg, the battery systems can be cycled thousands of times with almost no capacity fading. The batteries are an environmentally friendly alternative to lead-acid and nickel-cadmium batteries and are composed of abundant, inexpensive, and nonpoisonous materials. The batteries are expected to provide superior results in large devices that require high-energy density, high cycle life, a high degree of safety, and low-cost components. Further developments in this field are in active progress.  相似文献   
72.
73.
The exploration of cathode and anode materials that enable reversible storage of mono and multivalent cations has driven extensive research on organic compounds. In this regard, polyimide (PI)-based electrodes have emerged as a promising avenue for the development of post-lithium energy storage systems. This review article provides a comprehensive summary of the syntheses, characterizations, and applications of PI compounds as electrode materials capable of hosting a wide range of cations. Furthermore, the review also delves into the advancements in PI based solid state batteries, PI-based separators, current collectors, and their effectiveness as polymeric binders. By highlighting the key findings in these areas, this review aims at contributing to the understanding and advancement of PI-based structures paving the way for the next generation of energy storage systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号