首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   7篇
化学   97篇
数学   3篇
物理学   3篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   8篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   11篇
  2007年   8篇
  2006年   8篇
  2005年   9篇
  2004年   4篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
71.
Electron binding motifs in cluster anions of primary amides, (acetamide)(n)(-) and (propionamide)(n)(-), were studied with photoelectron spectroscopy. For both the amides, two band series due to distinct isomeric species in the multipole-bound states were found in the low electron binding energy region (<~0.4 eV) of the photoelectron spectra at the excitation wavelength of 1064 nm. In the case of acetamide, the isomer of higher band peak energies is predominant for 6≤ n ≤ 8, but it vanishes completely for n ≥ 9 to be replaced with the lower energy isomer. The same spectral behavior was seen for propionamide exhibiting an exception at n = 7. The isomers appearing in the lower and higher energy sides were attributed to the straight and folded forms of ladder-like hydrogen bond network structures, respectively, on the basis of density functional calculations. In the folded forms, the excess electron is held in the space between two terminal amide molecules of the ladder-like networks. Referring to calculations of potential energy curves with respect to the folding coordinate of the ladder-like networks, it is inferred that the major isomer alternation between n = 8 and 9 originates from an increase of stiffness of the molecular ladders depending on the cluster sizes. In photoelectron spectra at the 355 nm excitation, the valence anion state having a band peak around 2.5 eV was observed to emerge with threshold sizes of n = 13 and 9 for acetamide and propionamide, respectively. Static and dynamical effects of alkyl groups on the electron binding motifs are discussed in comparison with the previous study on formamide cluster anions.  相似文献   
72.
The accurate CH/pi interaction energy of the benzene-methane model system was experimentally and theoretically determined. In the experiment, mass analyzed threshold ionization spectroscopy was applied to the benzene-methane cluster in the gas phase, prepared in a supersonic molecular beam. The binding energy in the neutral ground state of the cluster, which is regarded as the CH/pi interaction energy for this model system, was evaluated from the dissociation threshold measurements of the cluster cation. The experimentally determined binding energy (D(0)) was 1.03-1.13 kcal/mol. The interaction energy of the model system was calculated by ab initio molecular orbital methods. The estimated CCSD(T) interaction energy at the basis set limit (D(e)) was -1.43 kcal/mol. The calculated binding energy (D(0)) after the vibrational zero-point energy correction (1.13 kcal/mol) agrees well with the experimental value. The effects of basis set and electron correlation correction procedure on the calculated CH/pi interaction energy were evaluated. Accuracy of the calculated interaction energies by DFT methods using BLYP, B3LYP, PW91 and PBE functionals was also discussed.  相似文献   
73.
An attractive intermolecular interaction between an aliphatic C-H bond and a pi-electron system (C-H/pi interaction) was characterized on the basis of infrared spectroscopy and high level ab initio calculations. Infrared spectroscopy was applied to several isolated methane clusters with benzene, toluene, p-xylene, mesitylene, and naphthalene in the gas phase, and the spectral changes of the C-H stretch bands in the methane moiety upon the cluster formation were observed. In the theoretical approach, interaction energies of the clusters were evaluated by high-level ab initio calculations. The forbidden symmetric C-H stretch transition weakly appeared in the IR spectra of the clusters, and it confirmed the small deformation of the methane moiety from the T(d)() symmetry, which was predicted by the ab initio calculations. On the other hand, the degenerated asymmetric C-H stretch band showed complicated splitting, which is qualitatively interpreted by a hindered rotor model. Low-frequency shifts upon the cluster formation were seen in the symmetric C-H stretch frequency, though the magnitude of the shifts was extremely small and no clear correlation with the interaction energy was found. On the other hand, the size of the calculated interaction energy well correlates with the polarizability of aromatics. The S(1)-S(0) electronic transition of the aromatic moiety was also observed, and it showed low-frequency shifts upon cluster formation. These results support the dominance of the dispersion interaction over the electrostatic and charge-transfer terms in the aliphatic C-H/pi interaction.  相似文献   
74.
75.
We report infrared spectra of phenol-(H(2)O)(n) (~20 ≤ n ≤ ~50) in the OH stretching vibrational region. Phenol-(H(2)O)(n) forms essentially the same hydrogen bond (H-bond) network as that of the neat water cluster, (H(2)O)(n+1). The phenyl group enables us to apply the scheme of infrared-ultraviolet double resonance spectroscopy combined with mass spectrometry, achieving the moderate size selectivity (0 ≤ Δn ≤ ~6). The observed spectra show clear decrease of the free OH stretch band intensity relative to that of the H-bonded OH band with increasing cluster size n. This indicates increase of the relative weight of four-coordinated water sites, which have no free OH. Corresponding to the suppression of the free OH band, the absorption peak of the H-bonded OH stretch band rises at ~3350 cm(-1). This spectral change is interpreted in terms of a signature of four-coordinated water sites in the clusters.  相似文献   
76.
Extensive density functional theory (DFT) calculations are carried out on various structural isomers of protonated methanol clusters, H(+)(MeOH)n (n = 2-9), to analyze the morphological development of the hydrogen bond network in the clusters with an increase of the cluster size. Coexistence of multiple structural isomers is demonstrated by the nearly degenerated energies. Moreover, significant temperature dependence of the preferential isomer structure is shown by the calculated Gibbs free energies. The previously reported infrared spectra of H(+)(MeOH)n (J. Phys. Chem. A 2005, 109, 138) are revisited on the basis of the spectral simulations of the isomers by DFT calculations.  相似文献   
77.
Infrared spectra of completely size-selected protonated water clusters H+(H2O)n are reported for clusters ranging from n=15 to 100. The behavior of the dangling OH stretch bands shows that the hydrogen bond structure in H+(H2O)n is uniquely different to that of (H2O)n up to the size of n=100, at least. This finding indicates that the presence of an excess proton creates a characteristic morphology in the hydrogen bond network architecture of more than 100 surrounding water molecules.  相似文献   
78.
The binding of molecules to specific DNA sequences is important for imaging genome DNA and for studying gene expression. Increasing the number of base pairs targeted by these molecules would provide greater specificity. N-Methylpyrrole–N-methylimidazole (Py–Im) polyamides are one type of such molecules and can bind to the minor groove of DNA in a sequence-specific manner without causing denaturation of DNA. Our recent work has demonstrated that tandem hairpin Py–Im polyamides conjugated with a fluorescent dye can be synthesized easily and can serve as new probes for studying human telomeres under mild conditions. Herein, to improve their selectivities to telomeres by targeting longer sequences, we designed and synthesized a fluorescent tandem trimer Py–Im polyamide probe, comprising three hairpins and two connecting regions (hinges). The new motif bound to 18 bp dsDNA in human telomeric repeats (TTAGGG)n, the longest sequence for specific binding reported for Py–Im polyamides. We compared the binding affinities and the abilities to discriminate mismatch, the UV-visible absorption and fluorescence spectra, and telomere staining in human cells between the tandem trimer and a previously developed tandem hairpin. We found that the tandem trimer Py–Im polyamide probe has higher ability to recognize telomeric repeats and stains telomeres in chemically fixed cells with lower background signal.  相似文献   
79.
Atomic vibrations due to stretching or bending modes cause optical phonon modes in the solid phase. These optical phonon modes typically lie in the frequency range of 102 to 104 cm−1. How much can the frequency of optical phonon modes be lowered? Herein we show an extremely low-frequency optical phonon mode of 19 cm−1 (0.58 THz) in a Rb-intercalated two-dimensional cyanide-bridged Co–W bimetal assembly. This ultralow frequency is attributed to a millefeuille-like structure where Rb ions are very softly sandwiched between the two-dimensional metal–organic framework, and the Rb ions slowly vibrate between the layers. Furthermore, we demonstrate temperature-induced and photo-induced switching of this low-frequency phonon mode. Such an external-stimulation-controllable sub-terahertz (sub-THz) phonon crystal, which has not been reported before, should be useful in devices and absorbers for high-speed wireless communications such as beyond 5G or THz communication systems.

Extremely low-frequency optical phonon mode in Rb-intercalated two-dimensional cyanide-bridged Co–W bimetal assembly and its temperature- and photo-induced switching effect.  相似文献   
80.
The photochemical properties of a series of newly synthesized dendrimers, 4-6, having a 2-(2'-hydroxyphenyl)benzoxazole (HBO) core, were studied in benzene. The fluorescence quantum yields (Phi(f)) were determined to be 0.022, 0.030, and 0.038 for 4, 5, and 6, respectively, increasing in higher generation dendrimers. With transient absorption spectroscopy, the quantum yields of the isomerization from the (E)-keto form ((1)K(E)*) to the (Z)-keto form ((1)K(Z)) (Phi(E)(-->)(Z)) and those of intersystem crossing (Phi(isc)) can be estimated. Whereas Phi(E)(-->)(Z) values decreased in higher generation dendrimers, Phi(isc) values were almost the same among 4-6. The quantum yields of nonradiative decay (Phi(nr)) increased in higher generation dendrimers. The dendrimer structure also affected the reverse tautomerization process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号