首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   7篇
化学   91篇
力学   12篇
数学   2篇
物理学   4篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   8篇
  2012年   15篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1993年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
91.
92.
93.
94.
The dimensionally restricted, diffusion‐driven volumetric change of almost flat nucleated surface nanobubbles hosted on dispersed nanoscale surfaces is proposed as the probable mechanism of heterogeneous bubble generation during polymer–nanoscale‐nucleant suspension foaming. By conducting numerical simulations, this hypothesis is used to predict the final bubble sizes upon polymeric foaming with nanoscale nucleants and to compare them with reported experimentally determined values. The volumetric change in the bubble hosted on the miniscule surface is envisaged to occur due to two parallel diffusion processes: 1) through the contact line of the bubble cap with the surface, and 2) through the curved gas–polymer interface. The foaming conditions determine the direction and molar rate of both these diffusions. The mechanism explains the relative nucleating efficiency of nanoscale surfaces experimentally observed during reactive and nonreactive polymeric foaming by predicting the growth or dissolution of the bubble. In the case of nonreactive thermoplastic foaming, the size of the bubbles released to the bulk from the nanoscale surface varies in a near linear fashion with respect to the size of the nucleants, limited to a maximum nucleant size. Beyond this maximum, the size of bubble generated is independent of the nucleant size. However, increase in the initial nanoscopic contact angle does not significantly affect the bubble size upon detachment from the surface.  相似文献   
95.
Novel, symmetrical, bent-core mesogens, namely substituted 1,3-phenylenebis{4'-[(ethoxycarbonyl)oxy]-1,1'-biphenyl}-4-carboxylates, are prepared with carbonate groups at both ends of the molecules. The mesophase properties are investigated for different electron-donating and -withdrawing substituents connected to the central ring at different positions. These compounds exhibit nematic and/or smectic A intercalated (SmA(int)) mesophases. Electro-optical studies show a very significant electric-field-induced biaxiality that is fast (<1 ms) and large (0.03) associated with a high birefringence (0.33 at 500 nm, 10 V mum(-1) field) for the unsubstituted analogue. For one substance this effect is observable from above 100 degrees C down to room temperature. Such electric-field-induced biaxiality may find practical applications in fast electro-optic modulation devices.  相似文献   
96.
Yudum Tepeli  Ulku Anik 《Electroanalysis》2016,28(12):3048-3054
Three different Graphene‐Metallic (Graphene‐Me) nanocomposites – Graphene‐Silver (Graphene‐Ag), Graphene‐Gold (Graphene‐Au) and Graphene‐Platinum (Graphene‐Pt) nanocomposites – were prepared and characterized. The electrochemical performances of these nanocomposites were tested by incorporating them with glassy carbon paste electrode (GCPE) and used them in biofuel cells (BFC) and as amperometric xanthine biosensor transducers. Present work contains the first application of Graphene‐Au and Graphene‐Ag nanocomposite in BFCs and also first application of these Graphene‐Me nanocomposites in xanthine biosensors. Considering BFC, power and current densities were calculated as 2.03 µW cm?2 and 167.46 µA cm?2 for the plain BFC, 3.39 µW cm?2 and 182.53 µA cm?2 for Graphene‐Ag, 4.43 µW cm?2 and 230.15 µA cm?2 for Grapehene‐Au and 6.23 µW cm?2 and 295.23 µA cm?2 for Graphene‐Pt nanocomposite included BFCs respectively. For the amperometric xanthine biosensor linear ranges were obtained in the concentration range between 5 µM and 50 µM with the RSD (n=3 for 30 µM xanthine) value of 4.28 % for plain xanthine biosensor, 3 µM and 50 µM with the RSD (n=3 for 30 µM xanthine) value of 9.37 % for Graphene‐Ag, 5 µM to 20 µM with the RSD (n=3 for 5 µM xanthine) value of 9.00 % and 30 µM to 70 µM with the RSD (n=3 for 30 µM xanthine) value of 8.80 % for Grapehene‐Au and 1 µM and 70 with the the RSD (n=3 for 30 µM xanthine) value of 2.59 % for Grapehene‐Pt based xanthine biosensors respectively.  相似文献   
97.
Non‐phosphorylated lipid A species confer reduced inflammatory potential for the bacteria. Knowledge on their chemical structure and presence in bacterial pathogens may contribute to the understanding of bacterial resistance and activation of the host innate immune system. In this study, we report the fragmentation pathways of negatively charged, non‐phosphorylated lipid A species under low‐energy collision‐induced dissociation conditions of an electrospray ionization quadrupole time‐of‐flight instrument. Charge‐promoted consecutive and competitive eliminations of the acyl chains and cross‐ring cleavages of the sugar residues were observed. The A‐type fragment ion series and the complementary X‐type fragment(s) with corresponding deprotonated carboxamide(s) were diagnostic for the distribution of the primary and secondary acyl residues on the non‐reducing and the reducing ends, respectively, of the non‐phosphorylated lipid A backbone. Reversed‐phase liquid chromatography in combination with negative‐ion electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry could provide sufficient information on the primary and secondary acyl residues of a non‐phosphorylated lipid A. As a standard, the hexa‐acylated ion at m/z 1636 with the Escherichia coli‐type acyl distribution (from E. coli O111) was used. The method was tested and refined with the analysis of other non‐phosphorylated hexa‐ and several hepta‐, penta‐, and tetra‐acylated lipid A species detected in crude lipid A fractions from E. coli O111 and Proteus morganii O34 bacteria. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
98.
A synthetic route to bisanilino-1H-pyrrolo[2,3-d]pyrimidines has been discovered, wherein the C(6)-chloride reactivity is necessarily enhanced via reversible acid-catalyzed internal activation of the pyrimidine ring by a C(1')-carboxamide moiety. Subsequent selective nucleophilic displacements at C(6) and C(1') constitute a one-pot tandem protocol for the rapid assembly of bisanilino-1H-pyrrolo[2,3-d]pyrimidines.  相似文献   
99.
A fast microchip electrophoresis method was developed to analyze and differentiate bacterial endotoxins directly from whole-cell lysates after removal of the proteinaceous components with proteinase K digestion and a precipitation of the endotoxin components. The partially purified endotoxin components were visualized by the interaction with dodecyl sulphate and then a fluorescent dye. The lipopolysaccharide (LPS) profiles can be directly evaluated from digested bacterial cells, and the electrophoresis patterns very closely resembled to those of pure LPSs, and the R and S chemotypes can be used to assign the strains. The method has been found to be useful in the screening of a large number of bacterial mutants and the structural characterization of endotoxins extracted only from 1 ml cultures.  相似文献   
100.
Two pentasaccharide sulfonic acids that were related to the antithrombin-binding domain of heparin were prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic-acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic-acid esters were found to be excellent donors and acceptors in the glycosylation reactions. Throughout the synthesis, the hydroxy groups to be methylated were masked in the form of acetates and the hydroxy groups to be sulfated were masked with benzyl groups. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of these new sulfonic-acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor?Xa with outstanding efficacy; however, the introduction of the third sulfonic-acid moiety resulted in a notable decrease in the anti-Xa activity. The difference in the biological activity of the disulfonic- and trisulfonic-acid counterparts could be explained by the different conformation of their L-iduronic-acid residues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号