首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   495篇
  免费   16篇
化学   350篇
晶体学   8篇
力学   27篇
数学   64篇
物理学   62篇
  2024年   2篇
  2023年   6篇
  2022年   13篇
  2021年   10篇
  2020年   11篇
  2019年   9篇
  2018年   9篇
  2017年   7篇
  2016年   16篇
  2015年   21篇
  2014年   16篇
  2013年   41篇
  2012年   39篇
  2011年   35篇
  2010年   26篇
  2009年   22篇
  2008年   25篇
  2007年   21篇
  2006年   22篇
  2005年   19篇
  2004年   14篇
  2003年   17篇
  2002年   16篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   6篇
  1996年   5篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   7篇
  1984年   7篇
  1983年   1篇
  1982年   7篇
  1981年   6篇
  1980年   2篇
  1979年   1篇
  1973年   4篇
  1965年   1篇
  1962年   2篇
  1961年   1篇
  1958年   1篇
  1944年   1篇
  1943年   1篇
排序方式: 共有511条查询结果,搜索用时 0 毫秒
91.
The dimetallacyclopentenone complexes [Fe2Cp2(CO)(μ−CO){μ−η13−CαHCβ(R)C(O)}] (R = CH2OH, 1a; R = CMe2OH, 1b; R = Ph, 1c) were prepared by photolytic reaction of [Fe2Cp2(CO)4] with alkyne according to the literature procedure. The X-ray and the electrochemical characterization of 1c are presented. The μ-allenyl compound [Fe2Cp2(CO)2(μ−CO){μ−η12α,β−CαHCβCMe2][BF4] ([2][BF4]), obtained by reaction of 1b with HBF4, underwent monoelectron reduction to give a radical species which was detected by EPR at room temperature. The EPR signal has been assigned to [Fe2Cp2(CO)2(μ−CO){μ−η12α,β-CαHCβCMe2}], [2]. The molecular structures of [2]+ and [2] were optimized by DFT calculations. The unpaired electron in [2] is localized mainly at the metal centers and, coherently, [2] does not undergo carbon-carbon dimerization, by contrast with what previously observed for the μ-vinyl radical complex [Fe2Cp2(CO)2(μ−CO){μ−η12-CHCH(Ph)}], [3]. Electron spin density distributions similar to the one of [2] were found for the μ-allenyl radical complexes [Fe2Cp2(CO)2(μ-CO){μ-η12α,β-CαHCβC(R1)(R2)}] (R1 = R2 = H, [4]; R1 = H, R2 = Ph, [5]; R1 = R2 = Ph, [6]).  相似文献   
92.
The acid decomposition of some p-substituted aryldithiocarbamates (arylDTCs) was observed in 20% aqueous ethanol at 25 degrees C, mu = 1.0 (KCl, for pH > 0). The pH-rate profiles showed a dumbell shape with a plateau where the observed first-order rate constant k(obs) was equal to k(o), the rate constant of the decomposition of the dithiocarbamic acid species. The acid dissociation constants of the dithiocarbamic acids (pK(a)) and their conjugate acids (pK(+)) were calculated from the pH-rate profiles. Comparatively, k(o) was more than 10(4)-fold faster than alkyldithiocarbamates (alkDTCs) with similar pK(N) (the acid dissociation constant of the parent amine). It was observed that the values of pK(a) and pK(+)were 5 and 8 units of pK, respectively, higher than the expected values from the pK(N) of alkylDTCs. The higher values were attributed to the inhibition of the delocalization of the nitrogen electron pair into the benzene ring because of the strong electron withdrawal effect of the thiocarbonyl group. Comparison of the activation parameters showed that the rate acceleration was due to a decrease in the enthalpy of activation. Proton inventory indicated the existence of a multiproton transition state, and it was consistent with an S to N proton transfer through a water molecule. There are two hydrogens contributing to a secondary SIE, and there are also two protons that are being transferred at the transition state to form a zwitterion followed by fast C-N bond cleavage. The mechanism could also be a concerted asynchronic process where the N-protonation is more advanced than the C-N bond breakdown. The kinetic barrier is similar to the torsional barrier of thioamides, suggesting that the driving force to reach the transition state is the needed torsion of the C-N bond that inhibits the resonance with the thiocarbonyl group and the aromatic moiety, increasing the basicity of the nitrogen and making the proton transfer thermodynamically favorable.  相似文献   
93.
Several 1,8-naphthyridine derivatives have been diazotizated to obtain the corresponding hydroxy derivatives or mixture of hydroxy and hydroxy nitro derivatives. The respective amounts of hydroxy and hydroxy nitro derivatives depends on the nature of the substituents, on their position on the naphthyridine nucleus, on the amount of sodium nitrite and on the reaction temperature. A study of the electronic density of some molecules suggests a possible explanation of the effects induced by the nature of the substituents and of their position. Some of the compounds were tested for their ability to inhibit human platelet aggregation in vitro induced by arachidonic acid. Only compound 26 showed interesting antiplatelet activity.  相似文献   
94.
The crystal structure of a glycopeptide antibiotic A–40926 aglycone was investigated by X-ray analysis at ?120°. A-40926 crystallises in the orthorhombic space group P212121 with two monomers in the asymmetric unit, a = 21.774(4), b = 28.603(7), c = 29.757(4) Å. ‘Conventional’ direct methods approach failed to solve the structure, but a novel iterative real/reciprocal space procedure was successful. Refinement against 11248 F2 data led to R1 = 13.3% for 6770 F > 4σ (F). The two monomers of A-40926 have similar conformations and are bound by antiparallel H-bonds to form a ‘chain’ structure of connecting dimers. The antibiotic molecule possesses a ‘binding pocket’ for the C-terminal carboxy group of the cell-wall protein, which is consisten with suggestions based on NMR data and the recently reported crystal structure of ureido-balhimycin. In A-40926 the monomers are polymerically linked by H-bonds, quite unlike the tight dimer formation observed in ureido-balhimycin.  相似文献   
95.
A series of new thiosemicarbazones derived from natural diterpene kaurenoic acid were synthesized and tested against the epimastigote forms of Trypanosoma cruzi to evaluate their antitrypanosomal potential. Seven of the synthesized thiosemicarbazones were more active than kaurenoic acid with IC?? values between 2-24.0 mM. The o-nitro-benzaldehyde-thiosemicarbazone derivative was the most active compound with IC?? of 2.0 mM. The results show that the structural modifications accomplished enhanced the antitrypanosomal activity of these compounds. Besides, the thiocyanate, thiosemicarbazide and the p- methyl, p-methoxy, p-dimethylamine, m-nitro and o-chlorobenzaldehyde-thiosemicarbazone derivatives displayed lower toxicity for LLMCK? cells than kaurenoic acid, exhibing an IC?? of 59.5 mM.  相似文献   
96.
Previous studies of the fractionated venom of the Brazilian armed spider Phoneutria nigriventer, obtained by gel filtration, have demonstrated the presence of a fraction PhM, a pool of small peptides (up to 2000 Da) that provoke contractions in smooth muscle of guinea pig ileum. Initial attempts to sequence these peptides were largely unsuccessful because of the low purification yield and the fact that the majority seemed to be blocked at their N-termini. In the present work, analysis of this venom fraction by mass spectrometry has revealed the existence of a highly complex mixture of peptides with molecular weights corresponding to those observed for the muscle-active peptides previously described (800-1800 Da). These peptides appear to be a family of isoforms with some particular features. The amino acid sequences of 15 isoforms have been determined by tandem mass spectrometry (MS/MS) using both electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q/ToFMS) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-ToF/ToFMS). These molecules contain post-translational modifications such as proteolysis and C-terminal amidation, which combine to generate additional isoforms. All the isoforms sequenced in this study possess an N-terminal pyroglutamic acid residue. A search for sequence similarities with other peptides in databanks revealed that these peptides are structurally related to the tachykinins, a family of neuro-hormone peptides. The data obtained in this study will be essential for the subsequent steps of this research, the synthesis of these peptides and pharmacological characterization of their biological activity.  相似文献   
97.
In this study, we characterized the conventional physicochemical properties of the complexes formed by plasmid DNA (pDNA) and cationic liposomes (CL) composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (50/25/25% molar ratio). We found that these properties are nearly unaffected at the studied ranges when the molar charge ratio (R(±)) between the positive charge from the CL and negative charge from pDNA is not close to the isoneutrality region (R(±) = 1). However, the results from in vitro transfection of HeLa cells showed important differences when R(±) is varied, indicating that the relationships between the physicochemical and biological characteristics were not completely elucidated. To obtain information regarding possible liposome structural modifications, small-angle X-ray scattering (SAXS) experiments were performed as a function of R(±) to obtain correlations between structural, physicochemical, and transfection properties. The SAXS results revealed that pDNA/CL complexes can be described as being composed of single bilayers, double bilayers, and multiple bilayers, depending on the R(±) value. Interestingly, for R(±) = 9, 6, and 3, the system is composed of single and double bilayers, and the fraction of the latter increases with the amount of DNA (or a decreasing R(±)) in the system. This information is used to explain the transfection differences observed at an R(±) = 9 as compared to R(±) = 3 and 6. Close to the isoneutrality region (R(±) = 1.8), there was an excess of pDNA, which induced the formation of a fraction of aggregates with multiple bilayers. These aggregates likely provide additional resistance against the release of pDNA during the transfection phenomenon, reflected as a decrease in the transfection level. The obtained results permitted proper correlation of the physicochemical and structural properties of pDNA/CL complexes with the in vitro transfection of HeLa cells by these complexes, contributing to a better understanding of the gene delivery process.  相似文献   
98.
Pyrroles are powerful nucleophiles in the reaction with dialkyl sulfoxides and trimethylchlorosilane (TMCS) or trimethylbromosilane (TMBS), affording sulfonium salts or halo derivatives, generally in good yields.  相似文献   
99.
Encapsulation can be a suitable strategy to protect natural antimicrobial substances against some harsh conditions of processing and storage and to provide efficient formulations for antimicrobial delivery. Lipid-based nanostructures, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanocarriers (NLCs), are valuable systems for the delivery and controlled release of natural antimicrobial substances. These nanostructures have been used as carriers for bacteriocins and other antimicrobial peptides, antimicrobial enzymes, essential oils, and antimicrobial phytochemicals. Most studies are conducted with liposomes, although the potential of SLNs and NLCs as antimicrobial nanocarriers is not yet fully established. Some studies reveal that lipid-based formulations can be used for co-encapsulation of natural antimicrobials, improving their potential to control microbial pathogens.  相似文献   
100.
Here, we demonstrate that platelet graphite nanofibers (PGNFs) exhibit fast heterogeneous electron‐transfer rates for a wide variety of compounds such as FeCl3, ferrocyanide, dopamine, uric acid, ascorbic acid, and the reduced form of β‐nicotinamide adenine dinucleotide. The electrochemical properties of PGNFs are superior to those of multiwalled carbon nanotubes (MWCNTs) or graphite microparticles (GMPs). Transmission electron microscopy and Raman spectroscopy reveal that this arises from the unique graphene sheet orientation of such platelet nanofibers, which accounts for their unparalleled high ratio of graphene edge planes versus basal planes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号