首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   6篇
化学   78篇
力学   1篇
数学   4篇
物理学   4篇
  2024年   1篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   9篇
  2012年   7篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2003年   1篇
  2000年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
31.
Tailoring and enhancing electrocatalytic activity is of the utmost importance from the viewpoints of sustainable energy and sensing. MoS2 and graphene show great promise for the electrocatalysis of many reactions. Given that both graphene and MoS2 are highly anisotropic in nature, with edge planes that are several orders of magnitude more catalytically active than basal planes, a new hybrid material with maximized edge‐plane density to provide efficient electron transfer, high catalytic activity, and conductive cores was engineered. The hybrid material consists of radial MoS2 nanosheets with a high density of edge planes and unsaturated active sulfur atoms as well as interspersed with conductive graphene nanoplatelets. This hybrid material exhibits excellent activity for the hydrogen evolution reaction and the detection of DNA nucleobases. Such a nanoengineered, nanostructured hybrid material may play a major role in future electrocatalytic devices.  相似文献   
32.
All-cis pentamethanolcyclopentane has been obtained in six steps by Diels–Alder condensation of maleic anhydride with (benzyloxymethyl)cyclopenta-2,4-diene, reduction of the anhydride to a diol that was protected as the acetonide. Then, ozonolysis of the double bond, followed by reduction led to a cis-diol. Then successive deprotections of the three other methanol groups gave the cis,cis,cis,cis-1,2,3,4,5-pentakis(hydroxymethyl)cyclopentane.  相似文献   
33.
Capture and release of peptides is often a critical operation in the pathway to discovering materials with novel functions. However, the best methods for efficient capture impede facile release. To overcome this challenge, we report linkers based on secondary amino alcohols for the release of peptides after capture. These amino alcohols are based on serine (seramox) or isoserine (isoseramox) and can be incorporated into peptides during solid‐phase peptide synthesis through reductive amination. Both linkers are quantitatively cleaved within minutes under NaIO4 treatment. Cleavage of isoseramox produced a native peptide N‐terminus. This linker also showed broad substrate compatibility; incorporation into a synthetic peptide library resulted in the identification of all sequences by nanoLC‐MS/MS. The linkers are cell compatible; a cell‐penetrating peptide that contained this linker was efficiently captured and identified after uptake into cells. These findings suggest that such secondary amino alcohol based linkers might be suitable tools for peptide‐discovery platforms.  相似文献   
34.
A modular asymmetric synthesis of the functionalized azaspirocycles 6 (m = 2, n = 1), 7 (m = 1, n = 2), 8 (m = n = 2), 12, 20, and 24 from the cyclic allylic sulfoximines 1 is described. The synthetic strategy is based on the stereoselective construction of the carbocycle 4 containing the amino-substituted tertiary C atom from 1 followed by the generation of the azaspirocycle. Three different routes have been followed for the synthesis of the heterocyclic ring: N,C-dianion cycloalkylation, ring-closing metathesis, and N-acyl iminium ion formation.  相似文献   
35.
The coupling of electron and proton transfers is currently under intense scrutiny. This Communication reports a new kind of proton-coupled electron transfer within a homodinuclear first-row transition-metal complex. The triply-bridged complex [Fe(III)(μ-OPh)(μ(2)-mpdp)Fe(II)(NH(2)Bn)] (1; mpdp(2-) = m-phenylenedipropionate) bearing a terminal aminobenzyl ligand can be reversibly deprotonated to the anilinate complex 2 whose core [Fe(II)(μ-OPh)(μ(2)-mpdp)Fe(III)(NHBn)] features an inversion of the iron valences. This observation is supported by a combination of UV-visible, (1)H NMR, and M?ssbauer spectroscopic studies.  相似文献   
36.
Two cats, two paths: Two novel domino reactions starting from 6-hydroxy-2-alkyl-2-alkynylcyclohexanones have been discovered. While redox-neutral platinum catalysis gives rise to furans through a sequence of cyclization, 1,2-shift, and Grob fragmentation, oxidative copper catalysis provides an entry to bicyclic 2,3-dihydrofurans. Upon cyclization and oxidation, an unusual benzilic acid rearrangement can take place in this case.  相似文献   
37.
The peptidoglycan glycosyltransferases (GTs) are essential enzymes that catalyze the polymerization of glycan chains of the bacterial cell wall from lipid II and thus constitute a validated antibacterial target. Their enzymatic cavity is composed of a donor site for the growing glycan chain (where the inhibitor moenomycin binds) and an acceptor site for lipid II substrate. In order to find lead inhibitors able to fill this large active site, we have synthesized a series of substrate analogues of lipid I and lipid II with variations in the lipid, the pyrophosphate, and the peptide moieties and evaluated their biological effect on the GT activity of E. coli PBP1b and their antibacterial potential. We found several compounds able to inhibit the GT activity in vitro and cause growth defect in Bacillus subtilis . The more active was C16-phosphoglycerate-MurNAc-(L-Ala-D-Glu)-GlcNAc, which also showed antibacterial activity. These molecules are promising leads for the design of new antibacterial GT inhibitors.  相似文献   
38.
Two new nanovehicles that have extended aromatic platforms as the cargo zones have been obtained. Two strategies were considered for the formation of the perylene core from two naphthalene precursors. The first was based on a Scholl-type reaction involving an oxidant, and the second used a brominated derivative to perform a homocoupling reaction. The first strategy failed under diverse coupling conditions in the presence of several strong oxidants. Nevertheless, the use of CoF(3) in trifluoroacetic acid triggered a dimerization reaction between two ester groups of one molecule and the naphthalene unit of another, thereby surprisingly yielding a ten-membered carbon macrocycle. The second strategy encountered a lack of reactivity of the substrate under several homocoupling conditions. The dimerization was not easily performed but Ullmann-type conditions ultimately gave the expected product. The low yield and low solubility of the product encouraged us to modify our initial design. The synthesis of a new chassis that incorporated additional tert-butyl groups improved the solubility of the molecules and also prevented overcyclization of the aromatic platform by blocking these positions. Some p-phenylene spacers were also intercalated between the iodine and perylene centers to increase the reactivity of the halide towards coupling reactions. Two new chassis were obtained by Scholl-type oxidative coupling using FeCl(3) as the oxidant. The introduction of four triptycene wheels allowed the formation of the two corresponding nanovehicles.  相似文献   
39.
Summary: Polymer latex particles were synthesized in the presence of inorganic particles, which had been organically-modified to promote favorable interactions with growing macromolecules. The organic modification was performed using three different routes: (1) surface covalent grafting of vinyl trialkoxysilanes, (2) surface adsorption of polyethylene glycol-based macromonomers, and (3) bulk modification through ion exchange with cationic monomers or cationic initiators. Two types of mineral particles were studied: commercial and self-prepared silica particles (with diameters from 80 nm to 1 µm), and commercial laponite clay particles with a cation exchange capacity of 0.75 meq · g−1. Emulsion polymerization was performed in the presence of styrene or butyl acrylate monomers. The morphologies of the nanocomposite particles were observed by (cryogenic) transmission electron microscopy and correlated to the organic modification procedure.  相似文献   
40.
Dynamic combinatorial chemistry (DCC) is a powerful supramolecular approach for discovering ligands for biomolecules. To date, most, if not all, biologically templated DCC systems employ only a single biomolecule to direct the self‐assembly process. To expand the scope of DCC, herein, a novel multiprotein DCC strategy has been developed that combines the discriminatory power of a zwitterionic “thermal tag” with the sensitivity of differential scanning fluorimetry. This strategy is highly sensitive and could differentiate the binding of ligands to structurally similar subfamily members. Through this strategy, it was possible to simultaneously identify subfamily‐selective probes against two clinically important epigenetic enzymes: FTO ( 7 ; IC50=2.6 μm ) and ALKBH3 ( 8 ; IC50=3.7 μm ). To date, this is the first report of a subfamily‐selective ALKBH3 inhibitor. The developed strategy could, in principle, be adapted to a broad range of proteins; thus it is of broad scientific interest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号