首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1284篇
  免费   54篇
  国内免费   13篇
化学   968篇
晶体学   24篇
力学   39篇
数学   107篇
物理学   213篇
  2024年   3篇
  2023年   11篇
  2022年   15篇
  2021年   98篇
  2020年   51篇
  2019年   60篇
  2018年   48篇
  2017年   24篇
  2016年   70篇
  2015年   43篇
  2014年   71篇
  2013年   113篇
  2012年   112篇
  2011年   108篇
  2010年   68篇
  2009年   58篇
  2008年   77篇
  2007年   49篇
  2006年   40篇
  2005年   34篇
  2004年   33篇
  2003年   21篇
  2002年   19篇
  2001年   5篇
  2000年   15篇
  1999年   8篇
  1998年   10篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有1351条查询结果,搜索用时 562 毫秒
71.
This study assesses the performance of optimized acacia wood-based activated carbon (AWAC) as an adsorbent for methylene blue (MB) dye removal in aqueous solution. AWAC was prepared via a physicochemical activation process that consists of potassium hydroxide (KOH) treatment, followed by carbon dioxide (CO2) gasification under microwave heating. By using response surface methodology (RSM), the optimum preparation conditions of radiation power, radiation time, and KOH-impregnation ratio (IR) were determined to be 360 W, 4.50 min, and 0.90 g/g respectively, which resulted in 81.20 mg/g of MB dye removal and 27.96% of AWAC’s yield. Radiation power and IR had a major effect on MB dye removal while radiation power and radiation time caused the greatest impact on AWAC’s yield. BET surface area, mesopore surface area, and pore volume of optimized AWAC were found to be 1045.56 m2/g, 689.77 m2/g, and 0.54 cm3/g, respectively. Adsorption of MB onto AWAC followed Langmuir and pseudo-second order for isotherm and kinetic studies respectively, with a Langmuir monolayer adsorption capacity of 338.29 mg/g. Mechanism studies revealed that the adsorption process was controlled by film diffusion mechanism and indicated to be thermodynamically exothermic in nature.  相似文献   
72.
The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.  相似文献   
73.
A total of fourteen pyrazoline derivatives were synthesized through cyclo-condensation reactions by chalcone derivatives with different types of semicarbazide. These compounds were characterized by IR, 1D-NMR (1H, 13C and Distortionless Enhancement by Polarization Transfer - DEPT-135) and 2D-NMR (COSY, HSQC and HMBC) as well as mass spectroscopy analysis (HRMS). The synthesized compounds were tested for their antituberculosis activity against Mycobacterium tuberculosis H37Ra in vitro. Based on this activity, compound 4a showed the most potent inhibitory activity, with a minimum inhibitory concentration (MIC) value of 17 μM. In addition, six other synthesized compounds, 5a and 5c–5g, exhibited moderate activity, with MIC ranges between 60 μM to 140 μM. Compound 4a showed good bactericidal activity with a minimum bactericidal concentration (MBC) value of 34 μM against Mycobacterium tuberculosis H37Ra. Molecular docking studies for compound 4a on alpha-sterol demethylase was done to understand and explore ligand–receptor interactions, and to hypothesize potential refinements for the compound.  相似文献   
74.
Cardiovascular diseases (CVDs) are considered as a major cause of death worldwide. Therefore, identifying and developing therapeutic strategies to treat and reduce the prevalence of CVDs is a major medical challenge. Several drugs used for the treatment of CVDs, such as captopril, emerged from natural products, namely snake venoms. These venoms are complex mixtures of bioactive molecules, which, among other physiological networks, target the cardiovascular system, leading to them being considered in the development and design of new drugs. In this review, we describe some snake venom molecules targeting the cardiovascular system such as phospholipase A2 (PLA2), natriuretic peptides (NPs), bradykinin-potentiating peptides (BPPs), cysteine-rich secretory proteins (CRISPs), disintegrins, fibrinolytic enzymes, and three-finger toxins (3FTXs). In addition, their molecular targets, and mechanisms of action—vasorelaxation, inhibition of platelet aggregation, cardioprotective activities—are discussed. The dissection of their biological effects at the molecular scale give insights for the development of future snake venom-derived drugs.  相似文献   
75.
Tea is one of the most widely consumed beverages worldwide after water, and green tea accounts for 20% of the total tea consumption. The health benefits of green tea are attributed to its natural antioxidants, namely, catechins, which are phenolic compounds with diverse beneficial effects on human health. The beneficial effects of green tea and its major bioactive component, (−)-epigallocatechin-3-gallate (EGCG), on health include high antioxidative, osteoprotective, neuroprotective, anti-cancer, anti-hyperlipidemia and anti-diabetic effects. However, the review of green tea’s benefits on female reproductive disorders, including polycystic ovary syndrome (PCOS), endometriosis and dysmenorrhea, remains scarce. Thus, this review summarises current knowledge on the beneficial effects of green tea catechins on selected female reproductive disorders. Green tea or its derivative, EGCG, improves endometriosis mainly through anti-angiogenic, anti-fibrotic, anti-proliferative and proapoptotic mechanisms. Moreover, green tea enhances ovulation and reduces cyst formation in PCOS while improving generalised hyperalgesia, and reduces plasma corticosterone levels and uterine contractility in dysmenorrhea. However, information on clinical trials is inadequate for translating excellent findings on green tea benefits in animal endometriosis models. Thus, future clinical intervention studies are needed to provide clear evidence of the green tea benefits with regard to these diseases.  相似文献   
76.
Structural Chemistry - Binding affinity and intermolecular interactions are essential characteristics that could be used to comprehend molecular recognition between molecules in supramolecular...  相似文献   
77.
This paper investigates the problem of projective lag synchronization behavior in drive-response dynamical networks (DRDNs) with identical and non-identical nodes. An adaptive control method is designed to achieve projective lag synchronization with fully unknown parameters and unknown bounded disturbances. These parameters were estimated by adaptive laws obtained by Lyapunov stability theory. Furthermore, sufficient conditions for synchronization are derived analytically using the Lyapunov stability theory and adaptive control. In addition, the unknown bounded disturbances are also overcome by the proposed control. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Simulation results show the effectiveness of the proposed method.  相似文献   
78.
The present research work describes the productive synthesis of novel bisbenzopyronopyran derivatives 4(a-h) and 5(a-h) via the photocyclization reactions of bischromones 3(a-h) under the inert conditions. The latter compounds have been realized efficiently through the O-alkylation reactions of the 3-hydroxychromone 2 with suitable dihalogenated aliphatic/aromatic/heteroaromatic reagents in the presence of dry acetone/anhydrous K2CO3/Bu4N+I (PTC). The cyclization reaction of chalcone 1 under the Algar-Flynn-Oyamada reaction conditions (KOH/H2O2) could results in the formation of compound 2 in the good yield. The structural scaffolds of the newly prepared bischromones and resultant bisbenzopyronopyrans have been certified from the meticulous analysis of their various spectroscopic parameters such as UV-Vis, IR, 1H/13C-NMR, and ESI-MS. It was found that o/m/p-xylene and pyridine-linked final symmetrical bistetracycles exhibited higher antimicrobial potencies as compared to alkyl chain-linked cyclized products. The bischromones 3(a-h) could be able to endow modest level of antimicrobial behavior.  相似文献   
79.
In spite of large spin coherence length in graphene due to small spin–orbit coupling, the created potential barrier and antiferromagnetic coupling at graphene/transition metal (TM) contacts strongly reduce the spin transport behavior in graphene. Keeping these critical issues in mind in the present work, ferromagnetic (Co, Ni) nanosheets are grown on graphene surface to elucidate the nature of interaction at the graphene/ferromagnetic interface to improve the spin transistor characteristics. Temperature dependent magnetoconductance shows unusual behavior exhibiting giant enhancement in magnetoconductance with increasing temperature. A model based on spin–orbit coupling operated at the graphene/TM interface is proposed to explain this anomalous result. We believe that the device performance can be improved remarkably tuning the spin–orbit coupling at the interface of graphene based spin transistor. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
80.
This present work discusses dual-blend green polymer electrolyte (GPE)–based natural polymers, composed of carboxyl methylcellulose (CMC) and chitosan (CS), created by introducing various compositions of ammonium bromide (NH4Br) as a dopant in the system. These GPEs were successfully prepared by the solution casting technique and characterized using electrical impedance spectroscopy (EIS). From EIS measurement, the highest room-temperature conductivity is 1.21 × 10?5 Scm?1 for the sample containing 20 wt.% of NH4Br. Plot of the temperature dependence of the GPEs revealed that the system obeys the Arrhenius rule and was thermally assisted. Besides that, dielectric studies were also conducted and the data were analyzed using complex permittivity, ?*, and complex electrical modulus, M*, to determine the sample with the highest conductivity value. Thus, this study confirmed non-Debye behavior in the sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号