首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   836篇
  免费   57篇
  国内免费   87篇
化学   211篇
晶体学   7篇
力学   81篇
数学   48篇
物理学   633篇
  2024年   2篇
  2023年   35篇
  2022年   13篇
  2021年   15篇
  2020年   27篇
  2019年   17篇
  2018年   25篇
  2017年   25篇
  2016年   34篇
  2015年   27篇
  2014年   57篇
  2013年   63篇
  2012年   43篇
  2011年   83篇
  2010年   56篇
  2009年   62篇
  2008年   69篇
  2007年   51篇
  2006年   46篇
  2005年   42篇
  2004年   40篇
  2003年   19篇
  2002年   14篇
  2001年   15篇
  2000年   7篇
  1999年   13篇
  1998年   11篇
  1997年   4篇
  1996年   6篇
  1995年   7篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   1篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有980条查询结果,搜索用时 31 毫秒
1.
We study the coupled translational, electronic, and field dynamics of the combined system “a two-level atom + a single-mode quantized field + a standing-wave ideal cavity”. In the semiclassical approximation with a point-like atom, interacting with the classical field, the dynamics is described by the Heisenberg equations for the atomic and field expectation values which are known to produce semiclassical chaos under appropriate conditions. We derive Hamilton–Schrödinger equations for probability amplitudes and averaged position and momentum of a point-like atom interacting with the quantized field in a standing-wave cavity. They constitute, in general, an infinite-dimensional set of equations with an infinite number of integrals of motion which may be reduced to a dynamical system with four degrees of freedom if the quantized field is supposed to be initially prepared in a Fock state. This system is found to produce semiquantum chaos with positive values of the maximal Lyapunov exponent. At exact resonance, the semiquantum dynamics is regular. At large values of detuning |δ|1, the Rabi atomic oscillations are usually shallow, and the dynamics is found to be almost regular. The Doppler–Rabi resonance, deep Rabi oscillations that may occur at any large value of |δ| to be equal to |αp0|, is found numerically and described analytically (with α to be the normalized recoil frequency and p0 the initial atomic momentum). Two gedanken experiments are proposed to detect manifestations of semiquantum chaos in real experiments. It is shown that in the chaotic regime values of the population inversion zout, measured with atoms after transversing a cavity, are so sensitive to small changes in the initial inversion zin that the probability of detecting any value of zout in the admissible interval [−1,1] becomes almost unity in a short time. Chaotic wandering of a two-level atom in a quantized Fock field is shown to be fractal. Fractal-like structures, typical with chaotic scattering, are numerically found in the dependence of the time of exit of atoms from the cavity on their initial momenta.  相似文献   
2.
This paper presents in-time motion adjustment in laser cladding manufacturing process as a means to improve dimensional accuracy and surface finish of the built part. Defects occurring during laser cladding degrade the part quality such as dimensional accuracy and surface finish. In this paper, in-time motion adjustment strategy was presented to remedy and eliminate defects occurring during laser cladding to improve the dimensional accuracy and surface finish. Based on the relationship between the motion of laser head relative to the growing part and other parameters in effects on clad profile, the laser traverse speed, stand-off distance and laser approach orientation to the existing clad layer were adjusted by instructions from a close-loop control system in real time to remedy and eliminate defects. The results of the experiments verified the effects of in-time motion adjustment on dimensional accuracy and surface finish.  相似文献   
3.
The influence of 70 keV He+ ion implantation and subsequent annealing of Cz-indium phosphide (InP) samples has been investigated using a slow positron beam-based Doppler broadening spectrometer. Three samples with ion fluences of 1 × 1016, 5 × 1016 and 1 × 1017 cm−2 were studied in the as-implanted condition as well as after annealing at 640 °C for times between 5 and 40 min. It was found that the line-shape parameter of the positron-electron annihilation peak in the implanted layer increases after 5 min annealing, then after longer annealing times it starts to decline gradually until it reaches a value close to the value of the as-grown sample. This implies that vacancy-like defects can be created in InP by He implantation followed by short-thermal annealing at T > 600 °C. Comparison of the results with a study where cavities were observed in He-implanted InP has been carried out.  相似文献   
4.
Nonlinear susceptibility of a quantum dot (QD) embedded in a two-sided cavity, is studied theoretically from a weak-coupling to a strong-coupling regime. In the relevance of a quantum logic gate, the corresponding nonlinear phase shifts (Kerr effect) are estimated for coherent wavepackets including one photon on average. In the weak-coupling regime, the phase shift enhances strongly as a function of a coupling constant between the cavity photon and QD, and eventually saturates in the strong-coupling regime. We also show transmission spectra to evaluate the efficiency of the phase shift. Although the efficiency decreases monotonically in the weak-coupling regime, it rises in the strong-coupling regime.  相似文献   
5.
The structural and microstructural characteristics of metastable Gd2(Ti1−yZry)2O7 powders prepared by mechanical milling have been studied by a combination of XRD and Raman spectroscopy. Irrespective of their Zr content, as-prepared powder phases present an anion-deficient fluorite-type of structure as opposed to the pyrochlore equilibrium configuration obtained for the same solid solution by other synthetic routes. These fluorites are stable versus thermal activation, at least up to temperatures of 800 °C. For the Ti-rich compositions, thermal treatments at higher temperatures facilitate the rearrangement of the cation and anion substructures and the relaxation of mechanochemically induced defects whereas for compositions with high Zr content, the fluorite crystal structure is retained even at temperatures as high as 1200 °C. Interestingly enough, transient pyrochlores showing a very unusual cation distribution were observed during the thermally induced defect-recovery process.  相似文献   
6.
Corrosion-related defects of pure iron were investigated by measuring Doppler broadening energy spectra (DBES) of positron annihilation and positron annihilation lifetime (PAL). Defect profiles of the S-parameter from DBES as a function of positron incident energy up to 30 keV (i.e. ∼1 μm depth) were analyzed. The DBES data show that S-parameter increases as a function of positron incident energy (mean depth) after corrosion, and the increase in the S-parameter is larger near the surface than in the bulk due to corrosion. Furthermore, information on defect size from PAL data as a function of positron incident energy up to 10 keV (i.e. ∼0.2 μm depth) was analyzed. In the two-state trapping model, the lifetime τ2 = 500 ps is ascribed to annihilation of positrons in voids with a size of the order of nanometer. τ1, which decreases with depth from the surface to the bulk, is ascribed to the annihilation of positrons in dislocations and three-dimensional vacancy clusters. The corroded samples show a significant increase in τ1 and the intensity I2, and near the surface the corroded iron introduces both voids and large-size three-dimensional vacancy clusters. The size of vacancy clusters decreases with depth.  相似文献   
7.
Keiji Maeda   《Applied Surface Science》2002,190(1-4):445-449
We have proposed a mechanism of nonideality, i.e., the temperature dependence of the ideality factor, in nearly ideal Au/n-Si Schottky barriers. Because of the nature of metal-induced gap states, positively ionized defects close to the interface are considered to cause local lowering of the Schottky barrier height (SBH) due to downward bending of the energy band. These positively charged defects become neutralized in equilibrium with the Fermi level due to the band bending, when they are very close to the interface. However, because the SBH lowering disappears by the neutralization of donor, the energy level of donor with a usual energy level scheme rises above the Fermi level after the neutralization. This contradiction to the equilibrium neutralization is resolved by Si self-interstitial with a large negative-U property, which is generated by the fabrication process. The energy level of the donor estimated from the SBH lowering is in good agreement with that of theoretical calculation of Si self-interstitial. Thus, the defect is concluded to be the Si self-interstitial, which is distributed to more than 10 Å depth from the interface.  相似文献   
8.
In 1991, we developed a new type of quasi-optical power combiner, called a compound quasi-optical power combiner, at Ka-band. In this paper, the circuit of such a compound quasi-optical power combiner is analysed. Its equivalent circuit model is proposed. The circuit equations, the balance condition, the injection locking and the stabilized condition of the compound quasi-optical power combiner are studed by the equivalent circuit model. As an example, a compound quasi-optical power combiner which consists of two single—cavity, two—device power combiners is analysed  相似文献   
9.
The absorption spectrum of natural water vapour around 1.5 μm has been recorded with a typical sensitivity of 5 × 10−10 cm−1 by using a CW-cavity ring down spectroscopy set up based on fibred DFB lasers. A series of 31 DFB lasers has allowed a full coverage of the 6130.8-6748.5 cm−1 (1.63-1.48 μm) region corresponding to the H transparency band of the atmosphere. The line parameters (wavenumber and intensity) of a total of 5190 lines, including 4247 lines of water vapor, were derived by a one by one fit of the lines to a Voigt profile. Different isotopologues of water (H216O, H218O, H217O, and HD16O) present in natural abundance in the sample contribute to the spectrum. For the main isotopologue, H216O, 2130 lines were measured with line intensities as weak as 10−29 cm/molecule while only 926 lines (including a proportion of 30% inaccurate calculated lines) with a minimum intensity of 3 × 10−27 cm/molecule are provided by the HITRAN and GEISA databases. Our comparison in the whole 5750-7965 cm−1 region, has also evidenced that an error in the process of conversion of the intensity units from cm−2/atm to cm−1/(molecule × cm−2) at 296 K, has led to H216O line intensities values listed in the HITRAN-2000 database, systematically 8 % below the original FTS values. The rovibrational assignment was performed on the basis of the ab initio calculations by Schwenke and Partridge with a subsequent refinement and validation using the Ritz combination principle together with all previously measured water transitions relevant to this study. This procedure allowed determining 172, 139, 71, and 115 new energy levels for the H216O, H218O, H217O, and HD16O isotopologues, respectively. The results are compared with the available databases and discussed in regard of previous investigations by Fourier transform spectroscopy. The spectrum analysis has showed that most of the transitions which cannot be assigned to water are very weak and are due to impurities such as carbon dioxide and ammonia, leaving only about 3% of the observed transitions unassigned. The interest of a detailed knowledge of water absorption for trace detectors developed in the 1.5 μm range is underlined: for instance HDO contributes significantly to the considered spectrum while no HDO line parameters are provided by the HITRAN database.  相似文献   
10.
A novel sensitive technique for the determination of losses in fiber cavities is presented. The method is based on the cavity ringdown scheme implemented in silica-based single-mode fibers. Bending losses of fiber cavities of different lengths have been measured showing all an oscillating behavior with respect to the curvature radius of the fiber as predicted by a theoretical model. The best minimum detectable absorbance per cavity pass achieved by this new method is 1.72×10−3 dB within a 10 m-long cavity. This limit suffices well for an accurate determination of optical bending losses even in bend-insensitive fibers. Furthermore, the comparison of the measured bending losses with a theoretical model allows the extraction of different fiber parameters. Good agreement has been found between the experimentally derived parameters and literature data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号