首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   10篇
  国内免费   4篇
化学   242篇
物理学   152篇
  2024年   5篇
  2023年   2篇
  2022年   12篇
  2021年   15篇
  2020年   2篇
  2019年   10篇
  2018年   13篇
  2017年   15篇
  2016年   15篇
  2015年   12篇
  2014年   15篇
  2013年   18篇
  2012年   23篇
  2011年   24篇
  2010年   34篇
  2009年   50篇
  2008年   52篇
  2007年   50篇
  2006年   18篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有394条查询结果,搜索用时 343 毫秒
1.
During Laser-Induced Breakdown Spectroscopy (LIBS) analysis of white lead pigment (basic lead carbonate, 2PbCO3·Pb(OH)2), used in wall paintings of historical interest, a yellow–brown discoloration has been observed around the crater. This phenomenon faded after a few days exposure under ambient atmosphere. It was established that the mechanism of this discoloration consists in lead oxides (PbO) formation. It was verified by further experiments under argon atmosphere that recombination of lead with oxygen in the plasma plume produces the oxides, which settle around the crater and induce this discoloration. The impact of discoloration on the artwork's aesthetic aspect and the role of atmosphere on discoloration attenuation are discussed. The mechanism is studied on three other pigments (malachite, Prussian blue and ultramarine blue) and threshold for discoloration occurrence is estimated.  相似文献   
2.
M.A. Gondal  T. Hussain  M.A. Baig 《Talanta》2007,72(2):642-649
Study of various binding materials like potassium bromide, poly(vinyl alcohol), starch, silver and aluminum has been carried out using laser-induced breakdown spectroscopy (LIBS). The role of matrix effects using these five binders on LIBS signal intensity was investigated for better performance of LIBS technique as a quantitative analytical tool. For comparative study of different binders, the signal intensity of different Mg lines at 518.3, 517.2, 383.8 and 279.5 nm wavelengths were recorded for pellets prepared with known concentrations of Mg in these binders. The influence of laser energy on ablated mass under different binding materials and its correlation with LIBS signal intensity has been explored. Optical scanning microscopy images of the ablated crater were studied to understand the laser ablation process. The study revealed that the binding material plays an important role in the generation of LIBS signal. The relative signal intensity measured for a standard Mg line (at 518.3 nm) were 735, 538, 387, 227 and 130 for potassium bromide, starch, poly(vinyl alcohol), silver and aluminum as binders, respectively. This indicates clearly that potassium bromide is better as a binder for LIBS studies of powder samples.  相似文献   
3.
Laser-induced breakdown spectroscopy has been employed for the investigation of the sulfur and chlorine content of building materials. Both, chloride and sulfate ions are major damaging species affecting the stability and lifetime of a structure. Chlorine and sulfur are mostly detected in the VUV and the NIR. In case of building materials the main elements like calcium or iron have many strong spectral lines over the whole spectral range, so that trace elements can only be detected in spectral windows unaffected from these lines. With regard to a preferably simply, robust against dust and vibrations and portable setup only the NIR spectral features are used for civil engineering applications.

Most detectors, mainly CCD cameras have rapidly decreasing quantum efficiency in the NIR. Also the quantum efficiency of the photocathode of CCD-Detectors with image intensifier is decreasing in the NIR. Different CCD-detectors were tested with respect to high quantum efficiency and high dynamic range, which is necessary for simultaneous detection of weak spectral lines from trace elements and intense spectral lines from main elements.

The measurements are made on reference samples consisting of cement, hydrated cement, cement mortar and concrete with well-defined amounts of the trace elements. Experimental conditions are chosen for an optimum intensity of the trace element spectral lines. The detector systems are compared by limit of detections and the signal to noise ratio.  相似文献   

4.
A multi-element Saha–Boltzmann plot method is proposed for the determination of the temperature and the relative number density in laser-induced plasmas, assuming local thermodynamic equilibrium and stoichiometry conservation. The method has been applied to the characterization of a plasma generated with a Cu–Fe–Ni–Mn alloy, using a Nd:YAG laser in air at atmospheric pressure. Spectra of the local emissivity have been obtained by spatial deconvolution of the intensity spectra, obtained with spatial resolution. Saha–Boltzmann plots obtained from the emissivities of 58 spectral lines of Fe I, Fe II, Ni I, Ni II, Mn I and Mn II have been fitted to linear behavior with high correlation, which shows the validity of the equation proposed. Radial distributions of the temperature and number densities of neutral atoms and ions have been determined. The results obtained reinforce the initial considerations of local thermodynamic equilibrium and conservation of stoichiometry. The proposed equation can also be applied to only one ionization species (multi-element Boltzmann plot). Spatially-integrated measurements of the plasma emission have also been performed to show that, in this case, the application of the method to the line intensities provides the two different apparent temperatures for neutral atoms and ions.  相似文献   
5.
Laser Induced Breakdown Spectroscopy (LIBS) was applied on sediments directly under water. The aim of the research was to develop a method for measuring the sediment elemental composition, including minor elements, which could be implemented in-situ. The plasma was generated by a double-pulse, Q-Switched Nd:YAG laser operated at 1064 nm. For signal detection, both ICCD and non-gated, compact detectors were used. The major difficulties in underwater sediment analyses are related to the natural and laser induced surface roughness, and to the sample softness. The latter is responsible for the formation of particle clouds above the surface, which scatter both the laser and plasma radiation, and often results in breakdown formation above the analyzed surface. In such cases, a broad sonoluminescence emission from water, formed during the gas bubble collapse was sometimes registered. Under optimized experimental conditions, even by using a non-gated detector and single shot acquisition, it was possible to detect several minor sediment constituents, such as titanium, barium, manganese and others. A crude estimation of the Limit of Detection (LODs) for these elements was performed by underwater measurements on certified soils/sediments. Due to strong shot-to-shot fluctuations in the plasma temperature, well correlated calibration curves, aimed for quantitative analyses, could only be obtained after applying an appropriate data processing procedure. The latter selects automatically only the spectra characterized by similar plasma parameters, which are related to their continuum spectral distribution. Application of such a procedure improves the measurement accuracy also in other surroundings and on samples different from the ones analyzed here.  相似文献   
6.
The role of helium addition on the analyte signal enhancement in laser-induced breakdown spectroscopy for analysis of pure gaseous systems was examined using carbon and hydrogen atomic emission lines. Increased analyte response, as measured by peak-to-base and signal-to-noise ratios, was observed with increasing helium addition, with maximum enhancement approaching a factor of 7. Additional measurements revealed a significant decrease in plasma electron density with increasing helium addition. To explore the mechanisms of analyte signal enhancement, the helium emission lines were also examined and found to be effectively quenched with nitrogen addition. In consideration of the data, it is concluded that the role of metastable helium is not as important as the overall changes in plasma properties, namely electron density and laser-plasma coupling. Helium addition is concluded to affect the electron density via Penning ionization, as well as to play a role in the initial plasma breakdown processes.  相似文献   
7.
Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation.

Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.  相似文献   

8.
Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.  相似文献   
9.
Laser-induced breakdown spectroscopy (LIBS) provides an alternative chemical analytical technique that obviates the issues of sample preparation and sample destruction common to most laboratory-based analytical methods. This contribution explores the capability of LIBS analysis to identify carbonate and silicate minerals rapidly and accurately. Fifty-two mineral samples (18 carbonates, 9 pyroxenes and pyroxenoids, 6 amphiboles, 8 phyllosilicates, and 11 feldspars) were analyzed by LIBS. Two composite broadband spectra (averages of 10 shots each) were calculated for each sample to produce two databases each containing the composite LIBS spectra for the same 52 mineral samples. By using correlation coefficients resulting from the regression of the intensities of pairs of LIBS spectra, all 52 minerals were correctly identified in the database. If the LIBS spectra of each sample were compared to a database containing the other 51 minerals, 65% were identified as a mineral of similar composition from the same mineral family. The remaining minerals were misidentified for two reasons: 1) the mineral had high concentrations of an element not present in the database; and 2) the mineral was identified as a mineral with similar elemental composition from a different family. For instance, the Ca–Mg carbonate dolomite was misidentified as the Ca–Mg silicate diopside. This pilot study suggests that LIBS has promise in mineral identification and in situ analysis of minerals that record geological processes.  相似文献   
10.
Detecting trace explosive residues at standoff distances in real-time is a difficult problem. One method ideally suited for real-time standoff detection is laser-induced breakdown spectroscopy (LIBS). However, atmospheric oxygen and nitrogen contributes to the LIBS signal from the oxygen- and nitrogen-containing explosive compounds, complicating the discrimination of explosives from other organic materials. While bathing the sample in an inert gas will remove atmospheric oxygen and nitrogen interference, it cannot practically be applied for standoff LIBS. Alternatively, we have investigated the potential of double pulse LIBS to improve the discrimination of explosives by diminishing the contribution of atmospheric oxygen and nitrogen to the LIBS signal. These initial studies compare the close-contact (< 1 m) LIBS spectra of explosives using single pulse LIBS in argon with double pulse LIBS in atmosphere. We have demonstrated improved discrimination of an explosive and an organic interferent using double pulse LIBS to reduce the air entrained in the analytical plasma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号