共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
J. Muela D. Martínez O. Lehmkuhl C.D. Pérez-Segarra A. Oliva 《International Journal of Computational Fluid Dynamics》2016,30(6):388-394
ABSTRACTA new parallel method for simulations with non-overlapping disconnected mesh domains but adjacent boundaries is presented and studied. This technique allows simulations using 3D unstructured meshes that are independent. 相似文献
3.
In this paper, we consider edge‐based reconstruction (EBR) schemes for solving the Euler equations on unstructured tetrahedral meshes. These schemes are based on a high‐accuracy quasi‐1D reconstruction of variables on an extended stencil along the edge‐based direction. For an arbitrary tetrahedral mesh, the EBR schemes provide higher accuracy in comparison with most second‐order schemes at rather low computational costs. The EBR schemes are built in the framework of vertex‐centered formulation for the point‐wise values of variables. Here, we prove the high accuracy of EBR schemes for uniform grid‐like meshes, introduce an economical implementation of quasi‐one‐dimensional reconstruction and the resulting new scheme of EBR family, estimate the computational costs, and give new verification results. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
An implicit multigrid‐driven algorithm for two‐dimensional incompressible laminar viscous flows has been coupled with a solution adaptation method and a mesh movement method for boundary movement. Time‐dependent calculations are performed implicitly by regarding each time step as a steady‐state problem in pseudo‐time. The method of artificial compressibility is used to solve the flow equations. The solution mesh adaptation method performs local mesh refinement using an incremental Delaunay algorithm and mesh coarsening by means of edge collapse. Mesh movement is achieved by modeling the computational domain as an elastic solid and solving the equilibrium equations for the stress field. The solution adaptation method has been validated by comparison with experimental results and other computational results for low Reynolds number flow over a shedding circular cylinder. Preliminary validation of the mesh movement method has been demonstrated by a comparison with experimental results of an oscillating airfoil and with computational results for an oscillating cylinder. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
5.
This paper concerns a new Lagrangian Discontinuous Galerkin‐type method to solve 2D fluid flows on unstructured meshes. By using a basis of Bernstein polynomials of degree m in each triangle, we define a diffusion process which ensures positivity and stability of the scheme. The discontinuities of the physical variables at the interfaces between cells are solved with an acoustic Riemann solver. A remeshing/remapping process is performed with a particle method: the remapping is locally conservative and its accuracy can be adapted to the accuracy of the numerical method. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
6.
In this paper, we present a high-order discontinuous Galerkin Eulerian-Lagrangian method for the solution of advection-diffusion problems on staggered unstructured meshes in two and three space dimensions. The particle trajectories are tracked backward in time by means of a high-order representation of the velocity field and a linear mapping from the physical to a reference system, hence obtaining a very simple and efficient strategy that permits to follow the Lagrangian trajectories throughout the computational domain. The use of an Eulerian-Lagrangian discretization increases the overall computational efficiency of the scheme because it is the only explicit method for the discretization of convective terms that admits large time steps without imposing a Courant-Friedrichs-Lewy–type stability condition. This property is fully exploited in this work by relying on a semi-implicit discretization of the incompressible Navier-Stokes equations, in which the pressure is discretized implicitly; thus, the sound speed does not play any role in the restriction of the maximum admissible time step. The resulting mild Courant-Friedrichs-Lewy stability condition, which is based only on the fluid velocity, is here overcome by the adoption of the Eulerian-Lagrangian method for the advection terms and an implicit scheme for the diffusive part of the governing equations. As a consequence, the novel algorithm is able to run simulation with a time step that is defined by the user, depending on the desired efficiency and time scale of the physical phenomena under consideration. Finally, a complete Message Passing Interface parallelization of the code is presented, showing that our approach can reach up to 96% of scaling efficiency. 相似文献
7.
Dimitri J. Mavriplis 《国际流体数值方法杂志》1991,13(9):1131-1152
A method of efficiently computing turbulent compressible flow over complex two-dimensional configurations is presented. The method makes use of fully unstructured meshes throughout the entire flow field, thus enabling the treatment of arbitrarily complex geometries and the use of adaptive meshing techniques throughout both viscous and inviscid regions of the flow field. Mesh generation is based on a locally mapped Delaunay technique in order to generate unstructured meshes with highly stretched elements in the viscous regions. The flow equations are discretized using a finite element Navier-Stokes solver, and rapid convergence to steady state is achieved using an unstructured multigrid algorithm. Turbulence modelling is performed using an inexpensive algebraic model, implemented for use on unstructured and adaptive meshes. Compressible turbulent flow solutions about multiple-element aerofoil geometries are computed and compared with experimental data. 相似文献
8.
An Arbitrary Lagrangian–Eulerian method for the calculation of incompressible Navier–Stokes equations in deforming geometries is described. The mesh node connectivity is defined by a Delaunay triangulation of the nodes, whereas the discretized equations are solved using finite volumes defined by the Voronoi dual of the triangulation. For prescribed boundary motion, an automatic node motion algorithm provides smooth motion of the interior nodes. Changes in the connectivity of the nodes are made through the use of local transformations to maintain the mesh as Delaunay. This allows the nodes and their associated Voronoi finite volumes to migrate through the domain in a free manner, without compromising the quality of the mesh. An MAC finite volume solver is applied on the Voronoi dual using a cell‐centred non‐staggered formulation, with cell‐face velocities being calculated by the Rhie–Chow momentum interpolation. Advective fluxes are approximated with the third‐order QUICK differencing scheme. The solver is demonstrated via its application to a driven cavity flow, and the flow about flapping aerofoil geometries. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
9.
In this paper, an original second‐order upwind scheme for convection terms is described and implemented in the context of a Control‐Volume Finite‐Element Method (CVFEM). The proposed scheme is a second‐order extension of the first‐order MAss‐Weighted upwind (MAW) scheme proposed by Saabas and Baliga (Numer. Heat Transfer 1994; 26B :381–407). The proposed second‐order scheme inherits the well‐known stability characteristics of the MAW scheme, but exhibits less artificial viscosity and ensures much higher accuracy. Consequently, and in contrast with nearly all second‐order upwind schemes available in the literature, the proposed second‐order MAW scheme does not need limiters. Some test cases including two pure convection problems, the driven cavity and steady and unsteady flows over a circular cylinder, have been undertaken successfully to validate the new scheme. The verification tests show that the proposed scheme exhibits a low level of artificial viscosity in the pure convection problems; exhibits second‐order accuracy for the driven cavity; gives accurate reattachment lengths for low‐Reynolds steady flow over a circular cylinder; and gives constant‐amplitude vortex shedding for the case of high‐Reynolds unsteady flow over a circular cylinder. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
10.
The paper presents an efficient finite volume method for unstructured grids with rotating sliding parts composed of arbitrary polyhedral elements for both single‐ and two‐phase flows. Mathematical model used in computations is based on the ensemble averaged conservation equations. These equations are solved for each phase and in case of single‐phase flow reduce to the transient Reynolds‐averaged Navier–Stokes (TRANS) equations. Transient flow induced by rotating impellers is thus resolved in time. The use of unstructured grids allows an easy and flexible meshing for the entire flow domain. Polyhedral cell volumes are created on the arbitrary mesh interface placed between rotating and static parts. Cells within the rotating parts move each time step and the new faces are created on the arbitrary interfaces only, while the rest of the domain remain ‘topologically’ unchanged. Implicit discretization scheme allows a wide range of time‐step sizes, which further reduce the computational effort. Special attention is given to the interpolation practices used for the reconstruction of the face quantities. Mass fluxes are recalculated at the beginning of each time step by using an interpolation scheme, which enhances the coupling between the pressure and velocity fields. The model has been implemented into the commercially available CFD code AVL SWIFT (AVL AST, SWIFT Manual 3.1, AVL List GmbH, Graz, Austria, 2002). Single‐phase flow in a mixing vessel stirred by a six‐bladed Rushton‐type turbine and two‐phase flow in aerated stirred vessel with the four‐blade Rushton impeller are simulated. The results are compared with the available experimental data, and good agreement is observed. The proposed algorithm is proved to be both stable and accurate for single‐phase as well as for the two‐phase flows calculations. Copyright 2004 John Wiley & Sons, Ltd. 相似文献
11.
A refined r‐factor algorithm for implementing total variation diminishing (TVD) schemes on arbitrary unstructured meshes, referred to henceforth as a face‐perpendicular far‐upwind interpolation scheme for arbitrary meshes (FFISAM), is proposed based on an extensive review of the existing r‐factor algorithms available in the literature. The design principles, as well as the respective advantages and disadvantages, of the existing algorithms are first systematically analyzed before presenting the FFISAM. The FFISAM is designed to combine the merits of various existing r‐factor algorithms. The performance of the FFISAM, implemented in 10 classical TVD schemes, is evaluated against four two‐dimensional pure‐advection benchmark test cases where analytical solutions are available. The numerical results clearly show that the FFISAM leads to a better overall performance than the existing algorithms in terms of accuracy and convergence on arbitrary unstructured meshes for the 10 classical TVD schemes. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
Fue‐Sang Lien 《国际流体数值方法杂志》2000,33(3):355-374
An all‐speed algorithm based on the SIMPLE pressure‐correction scheme and the ‘retarded‐density’ approach has been formulated and implemented within an unstructured grid, finite volume (FV) scheme for both incompressible and compressible flows, the latter involving interaction of shock waves. The collocated storage arrangement for all variables is adopted, and the checkerboard oscillations are eliminated by using a pressure‐weighted interpolation method, similar to that of Rhie and Chow [Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 1983; 21 : 1525]. The solution accuracy is greatly enhanced when a higher‐order convection scheme combined with adaptive mesh refinement (AMR) are used. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
13.
A cost‐effective curvature calculation approach for interfacial flows on unstructured meshes 下载免费PDF全文
We present a simple and cost‐effective curvature calculation approach for simulations of interfacial flows on structured and unstructured grids. The interface is defined using volume fractions, and the interface curvature is obtained as a function of the gradients of volume fractions. The gradient computation is based on a recently proposed gradient recovery method that mimicks the least squares approach without the need to solve a system of equations and is quite easy to implement on arbitrary polygonal meshes. The resulting interface curvature is used in a continuum surface force formulation within the framework of a well‐balanced finite‐volume algorithm to simulate multiphase flows dominated by surface tension. We show that the proposed curvature calculation is at least as accurate as some of the existing approaches on unstructured meshes while being straightforward to implement on any mesh topology. Numerical investigations also show that spurious currents in stationary problems that are dependent on the curvature calculation methodology are also acceptably low using the proposed approach. Studies on capillary waves and rising bubbles in viscous flows lend credence to the ability of the proposed method as an inexpensive, robust, and reasonably accurate approach for curvature calculation and numerical simulation of multiphase flows. 相似文献
14.
We propose a well‐balanced stable generalized Riemann problem (GRP) scheme for the shallow water equations with irregular bottom topography based on moving, adaptive, unstructured, triangular meshes. In order to stabilize the computations near equilibria, we use the Rankine–Hugoniot condition to remove a singularity from the GRP solver. Moreover, we develop a remapping onto the new mesh (after grid movement) based on equilibrium variables. This, together with the already established techniques, guarantees the well‐balancing. Numerical tests show the accuracy, efficiency, and robustness of the GRP moving mesh method: lake at rest solutions are preserved even when the underlying mesh is moving (e.g., mesh points are moved to regions of steep gradients), and various comparisons with fixed coarse and fine meshes demonstrate high resolution at relatively low cost. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
A high‐order flux reconstruction adaptive mesh refinement method for magnetohydrodynamics on unstructured grids 下载免费PDF全文
We report our recent development of the high‐order flux reconstruction adaptive mesh refinement (AMR) method for magnetohydrodynamics (MHD). The resulted framework features a shock‐capturing duo of AMR and artificial resistivity (AR), which can robustly capture shocks and rotational and contact discontinuities with a fraction of the cell counts that are usually required. In our previous paper, 36 we have presented a shock‐capturing framework on hydrodynamic problems with artificial diffusivity and AMR. Our AMR approach features a tree‐free, direct‐addressing approach in retrieving data across multiple levels of refinement. In this article, we report an extension to MHD systems that retains the flexibility of using unstructured grids. The challenges due to complex shock structures and divergence‐free constraint of magnetic field are more difficult to deal with than those of hydrodynamic systems. The accuracy of our solver hinges on 2 properties to achieve high‐order accuracy on MHD systems: removing the divergence error thoroughly and resolving discontinuities accurately. A hyperbolic divergence cleaning method with multiple subiterations is used for the first task. This method drives away the divergence error and preserves conservative forms of the governing equations. The subiteration can be accelerated by absorbing a pseudo time step into the wave speed coefficient, therefore enjoys a relaxed CFL condition. The AMR method rallies multiple levels of refined cells around various shock discontinuities, and it coordinates with the AR method to obtain sharp shock profiles. The physically consistent AR method localizes discontinuities and damps the spurious oscillation arising in the curl of the magnetic field. The effectiveness of the AMR and AR combination is demonstrated to be much more powerful than simply adding AR on finer and finer mesh, since the AMR steeply reduces the required amount of AR and confines the added artificial diffusivity and resistivity to a narrower and narrower region. We are able to verify the designed high‐order accuracy in space by using smooth flow test problems on unstructured grids. The efficiency and robustness of this framework are fully demonstrated through a number of two‐dimensional nonsmooth ideal MHD tests. We also successfully demonstrate that the AMR method can help significantly save computational cost for the Orszag‐Tang vortex problem. 相似文献
16.
This paper presents a new approach to MUSCL reconstruction for solving the shallow‐water equations on two‐dimensional unstructured meshes. The approach takes advantage of the particular structure of the shallow‐water equations. Indeed, their hyperbolic nature allows the flow variables to be expressed as a linear combination of the eigenvectors of the system. The particularity of the shallow‐water equations is that the coefficients of this combination only depend upon the water depth. Reconstructing only the water depth with second‐order accuracy and using only a first‐order reconstruction for the flow velocity proves to be as accurate as the classical MUSCL approach. The method also appears to be more robust in cases with very strong depth gradients such as the propagation of a wave on a dry bed. Since only one reconstruction is needed (against three reconstructions in the MUSCL approach) the EVR method is shown to be 1.4–5 times as fast as the classical MUSCL scheme, depending on the computational application. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
17.
Matrix‐free implicit treatments are now commonly used for computing compressible flow problems: a reduced cost per iteration and low‐memory requirements are their most attractive features. This paper explains how it is possible to preserve these features for all‐speed flows, in spite of the use of a low‐Mach preconditioning matrix. The proposed approach exploits a particular property of a widely used low‐Mach preconditioner proposed by Turkel. Its efficiency is demonstrated on some steady and unsteady applications. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
18.
This paper presents a numerical method for simulating turbulent flows via coupling the Boltzmann BGK equation with Spalart–Allmaras one equation turbulence model. Both the Boltzmann BGK equation and the turbulence model equation are carried out using the finite volume method on unstructured meshes, which is different from previous works on structured grid. The application of the gas‐kinetic scheme is extended to the simulation of turbulent flows with arbitrary geometries. The adaptive mesh refinement technique is also adopted to reduce the computational cost and improve the efficiency of meshes. To organize the unstructured mesh data structure efficiently, a non‐manifold hybrid mesh data structure is extended for polygonal cells. Numerical experiments are performed on incompressible flow over a smooth flat plate and compressible turbulent flows around a NACA 0012 airfoil using unstructured hybrid meshes. These numerical results are found to be in good agreement with experimental data and/or other numerical solutions, demonstrating the applicability of the proposed method to simulate both subsonic and transonic turbulent flows. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
19.
A composite finite volume method (FVM) is developed on unstructured triangular meshes and tested for the two‐dimensional free‐surface flow equations. The methodology is based on the theory of the remainder effect of finite difference schemes and the property that the numerical dissipation and dispersion of the schemes are compensated by each other in a composite scheme. The composite FVM is formed by global composition of several Lax–Wendroff‐type steps followed by a diffusive Lax–Friedrich‐type step, which filters out the oscillations around shocks typical for the Lax–Wendroff scheme. To test the efficiency and reliability of the present method, five typical problems of discontinuous solutions of two‐dimensional shallow water are solved. The numerical results show that the proposed method, which needs no use of a limiter function, is easy to implement, is accurate, robust and is highly stable. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
20.
A high‐order element based adaptive mesh refinement strategy for three‐dimensional unstructured grid 下载免费PDF全文
Adaptive mesh refinement (AMR) shows attractive properties in automatically refining the flow region of interest, and with AMR, better prediction can be obtained with much less labor work and cost compared to manually remeshing or the global mesh refinement. Cartesian AMR is well established; however, AMR on hybrid unstructured mesh, which is heavily used in the high‐Reynolds number flow simulation, is less matured and existing methods may result in degraded mesh quality, which mostly happens in the boundary layer or near the sharp geometric features. User intervention or additional constraints, such as freezing all boundary layer elements or refining the whole boundary layer, are required to assist the refinement process. In this work, a novel AMR strategy is developed to handle existing difficulties. In the new method, high‐order unstructured elements are first generated based on the baseline mesh; then the refinement is conducted in the parametric space; at last, the mesh suitable for the solver is output. Generating refined elements in the parametric space with high‐order elements is the key of this method and this helps to guarantee both the accuracy and robustness. With the current method, 3‐dimensional hybrid unstructured mesh of huge size and complex geometry can be automatically refined, without user intervention nor additional constraints. With test cases including the 2‐dimensional airfoil and 3‐dimensional full aircraft, the current AMR method proves to be accurate, simple, and robust. 相似文献