首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用热蒸发气相沉积法在Si(100)衬底上生长直径约为60~70 nm的氧化锌(ZnO)纳米线,迸一步运用离子束溅射技术和热氧化工艺在ZnO纳米线表面形成含有均匀密集分布的超细氧化铜(CuO)纳米颗粒的CuO壳层,构成n-ZnO(核芯)/p-CuO(壳层)同轴纳米线异质结.扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)用于研究样品的形貌、成分和晶体结构.实验结果表明,生长的ZnO纳米线呈纤锌矿单晶结构,CuO壳层为多晶结构.I-V曲线表明该同轴纳米线异质结构具有优良的二极管整流特性.这种具有大的异质结面积和高的比表面受光面积及强的表面化学活性的n-ZnO/p-CuO同轴纳米线异质结构在大电流密度的纳米整流器件、太阳能电池、光敏器件和气敏传感器等领域有很好的应用前景.  相似文献   

2.
CuO/ZnO量子点异质结及同轴纳米线异质结构的研制   总被引:1,自引:0,他引:1  
采用离子束溅射技术和热氧化工艺,对预先制备的ZnO纳米线表面进行纳米CuO修饰,研究了不同溅射工艺条件下对形成的CuO/ZnO纳米线异质结构的影响,通过控制溅射参数成功地合成出不同CuO量子点尺寸和分布密度的CuO/ZnO量子点异质结和CuO为壳层的CuO/ZnO同轴纳米线异质结构.将X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)用于研究样品的结构和形貌.实验结果表明,溅射在ZnO纳米线表面的Cu膜的厚度对形成的CuO/ZnO异质结构起着重要的作用.在Cu膜适度较薄时,获得了直径仅5 nm、分布较均匀的高密度(2.05×1010mm-2)CuO/ZnO量子点异质结;而Cu膜较厚时,形成的是CuO/ZnO同轴纳米线异质结构.利用高分辨透射电子显微镜(HRTEM)进一步对量子点异质结和同轴纳米线异质结的界面晶体结构进行了研究.  相似文献   

3.
以Cu为基底,经热氧化制备出高质量的有序的单晶CuO纳米线阵列.通过采用离子束溅射技术,在高比表面积的CuO纳米线表面修饰ZnO纳米颗粒.运用X射线衍射仪(XRD)、透射电镜(TEM)、扫描电子显微镜(SEM)研究了样品的成分、晶体结构和表面形貌.实验结果表明,不同温度和时间下生长出的CuO纳米线阵列的纳米结构具有不同的成分、结构和形貌;600℃热氧化4 h生长出的纳米线均匀致密地附着在衬底表面,ZnO纳米颗粒浓密而规则地出现在CuO纳米线表面.这种由ZnO纳米颗粒和CuO纳米线构成的复合异质结构可以有效地增强CuO纳米线对CO的选择性探测特性.  相似文献   

4.
用溶液法在镀有ZnO缓冲层的硅衬底上制备出定向ZnO纳米杆阵列,然后再通过硫代乙酰胺(TAA)辅助硫化法将氧化锌一维纳米结构转化为ZnO/ZnS的核-壳纳米结构.运用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和室温光致发光谱(PL)研究了样品的结构、形貌和光学性质.结果表明,ZnO/ZnS核-壳纳米杆的带边发光峰比ZnO纳米杆有显著增强,且峰化蓝移.  相似文献   

5.
利用Zn膜热氧化获得的非晶ZnO薄膜作为缓冲层,再采用Zn粉热蒸发工艺合成出定向、致密且直径较细(≈40 nm)的单晶ZnO纳米杆阵列,其阵列密度约为2.3×107mm-2.比较了在厚度不同的Zn膜所形成的ZnO缓冲层上生长的ZnO纳米杆形态,讨论了ZnO缓冲层表面形貌对ZnO纳米杆生长形态的影响.结果表明,随Zn膜厚度的增加,ZnO缓冲层从岛状大颗粒(0.5~1μm)并伴有密集小颗粒(<20 nm)状态变为连续薄膜,所得ZnO纳米杆从沿大颗粒表面无规则发散生长并伴小颗粒上的准定向生长转变成垂直于衬底的大面积定向生长,且纳米杆阵列也随着Zn膜厚度增加而变得定向、致密、和分布均匀.  相似文献   

6.
不同形貌氧化锌纳米棒的CVD法制备及生长机制讨论   总被引:3,自引:0,他引:3  
采用CVD技术制备了不同形貌的ZnO纳米棒.并利用XRD、SEM、能谱仪、荧光光谱仪对比研究了其表面结构、成份、相结构及光致发光特性.结果表明,样品形貌随着沉积位置的变化而变化,其生长遵循金属自催化机制.并且表明离子化氧空位的存在有利于ZnO的绿光发射.  相似文献   

7.
ZnO多枝纳米棒水热法生长及其光学性质   总被引:1,自引:0,他引:1  
以硝酸锌(Zn(NO3)2.6H2O)和六亚甲基四胺(C6H12N4)为原料,采用水热法在90℃生长出具有多枝六方纳米棒的ZnO纳米结构,运用X射线衍射(XRD)、扫描电子显微镜(SEM)和室温光致发光谱(PL)研究了ZnO样品的结构、形貌和光学性质.观察到多枝纳米棒的形成和生长情况,发现多枝ZnO纳米结构由单根纳米棒演化而来,不同发展阶段样品的PL谱呈现出强的黄绿光发射现象.样品的高斯拟合PL谱揭示了没有分枝的纳米棒样品中,氧间隙缺陷远多于氧空位缺陷,而分枝的ZnO样品中氧间隙缺陷与氧空位缺陷浓度的比值降低.  相似文献   

8.
在较低温度(460℃)和无催化剂的条件下,通过热蒸发纯Zn粉在硅衬底上成功地制备出ZnO亚微米梳状结构.采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和室温光致发光光谱(PL)等技术分别研究了制备样品的晶体结构、表面形貌和光学性质.结果表明,具有均一直径和长度的单晶梳齿规则地生长在作为梳干的ZnO纳米片的Zn-(0001)极性面并沿[0001]方向择优生长.逆气流生长的样品的梳齿粗于顺气流生长样品的梳齿,而其波长为500 nm左右的绿色PL发射峰强度明显低于顺气流样品的发射峰强度,揭示出在氧气较充足的逆气流环境下生长的样品中的氧空位缺陷少于顺气流下生长的样品的氧空位缺陷.样品表面的Au纳米颗粒修饰大大增强了制备的梳状结构样品的紫外发射光强度,并明显降低了样品的绿色光致发射峰强度.  相似文献   

9.
利用模板法制备大孔SiO2材料,而后借助水热合成法在孔道中生长ZnO纳米线,得到新型纳米复合材料(SiO2/Zn ONWs).采用静电吸附法将酪氨酸酶(TYR)固定在纳米复合载体上,用于L-多巴合成.从扫描电子显微镜中观察到ZnO纳米线在孔道中呈现无规线团形貌,且分布均匀. TYR在SiO2/ZnO NWs上的最大负载量高达162.3 mg·g-1,约是纯大孔SiO2载体3倍,且远高于其他固定化TYR系统.利用固定化TYR进行L-多巴合成,在最优反应条件(35℃、p H 6.0、L-抗坏血酸浓度10 mmol·L-1)下催化1.5 h, L-多巴的产率可达70.2%.固定化TYR展现良好的储存稳定性,储存28 d仍保持78.6%的相对活性,远高于游离状态TYR,并可重复使用,经历10个循环后仍能保持42.1%的L-多巴产率.  相似文献   

10.
将Zn/F离子先后注入到非晶二氧化硅中并分别在400,600,700 ℃下进行了退火.用光学吸收谱、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)对退火的样品进行分析,发现在600 ℃退火后ZnO量子点已经形成.二次离子质谱仪(SIMS)测试发现在溅射时间为2 s时Si,Zn元素同时出现,说明没有在衬底的表面形成ZnO薄膜.从原子力显微镜(AFM)图像看到有少量的颗粒被蒸发到衬底的表面,说明在衬底的内部形成了ZnO量子点.F离子注入的作用为在衬底的内部形成ZnO量子点提供了O2分子.  相似文献   

11.
利用离子注入法在Si(001)衬底上先后注入了Ga+和Sb+,注入能过分别为140,220 kev,注入剂量分别为8.2×1016,6.2×1016cm-2,然后对样品分别经过一次退火和二次退火处理制备出了量子点材料.用透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)观察了退火后量子点截面像.实验结果表明,经二次退火生长的量子点晶格结构和Si衬底损伤的修复要明显优于一次退火.  相似文献   

12.
以溶胶-凝胶法制备c轴取向为主的ZnO薄膜作缓冲层,采用阴极电化学沉积技术制备高c轴取向ZnO纳米结构.在0.7 mA/cm2的恒定电流密度下生长出直径约50 nm、密度为2.5×107mm-2的垂直向上的ZnO纳米杆阵列,通过逐渐增大电流密度(0.4~0.9 mA/cm2)或逐渐减小电流密度(0.9~0.4 mA/cm2)分别研制出直径逐渐变小或变大的纳米杆阵列,实现了纳米杆形貌、尺寸的可控生长.c轴择优取向的同质ZnO缓冲层既为纳米杆的定向生长提供了形核中心又减小了纳米杆的晶格失配度,有ZnO缓冲层样品的强紫外光发射和较弱的与缺陷相关的可见光发射的光致发光结果证实了缓冲层对提高样品晶体质量的重要作用.  相似文献   

13.
本文报道了利用化学气相沉积法,以Bi_2Te_3为生长源,通过升华分解气相输运沉积实现碲单晶纳米管的生长.利用扫描电子显微(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)、能量色散谱(EDS)对样品的形貌、微结构、组分进行了表征.分析结果显示所得样品是结晶良好的三方碲单晶纳米管,是具有规则外形的部分中空的管状一维纳米结构.  相似文献   

14.
以硅片为衬底,使用六水合硝酸锌(Zn(NO3)2·6H2O)、六水合硝酸铈(Ce(NO3)3·6H2O)以及六次甲基四胺(C6H12N4)为原料,采用水热法在90℃下生长出表面修饰CeO2纳米颗粒的ZnO亚微米杆,运用X射线衍射(XRD)、透射电镜(TEM)、扫描电子显微镜(SEM)及电子能谱仪(EDX)研究了样品的晶体结构、表面形貌和成分.实验结果表明,在不同的初始溶液浓度下长出的纳米结构有不同的形貌、结构和成分.通过对不同条件产物的形貌和结构的观察,发现在Ce(NO3)3·6H2O与Zn(NO3)2·6H2O的摩尔比例为1∶10时生长出的纳米颗粒浓密且均匀地附着在纳米杆的表面.这种纳米颗粒表面修饰的复合结构在CO的选择性探测方面有更好的应用价值.  相似文献   

15.
以氯化锌(ZnCl2)和25%浓度氨水(NH3·H2O)为原料,采用水热法制备了 ZnO纳米材料.比较了ZnO纳米材料在铜和硅不同衬底上的区别和衬底垂直放置与底部水平放置时的区别,以及垂直放置时随垂直高度的不同产生的变化.借助于X射线衍射(XRD)和扫描电镜(SEM)等测试手段.对其结构、形貌进行了分析研究.研究结果表明,相对于硅,铜衬底上更容易生长出取向一致、结品良好的ZnO纳米棒结构.根据生长环境中气体的氛围和压力对乖直于衬底方向上生长的ZnO造成的影响,提出了水热法制备ZnO纳米材料的生长机理.  相似文献   

16.
在反相微乳液十六烷基三甲基溴化铵(CTAB)中用单步法合成Au纳米棒和Au纳米球形颗粒作种子,再通过抗坏血酸还原Pd盐的方法制备了多种形态的Au/Pd核-壳结构纳米粒子.通过透射电子显微镜(TEM)、紫外-可见-近红外(UV-vis-NIR)分光光度计对Au/Pd复合粒子的形貌和光学吸收特性进行了表征.结果表明,通过调控Au核的形态,以Au纳米棒和Au纳米球形颗粒作种子,可分别得到棒状和类球状的核-壳Au/Pd纳米粒子.棒状粒子中,Au核(纳米棒)的平均长度为31 nm,宽为7 nm,Pd壳的平均厚度为8 nm;类球状粒子中,Au核(纳米球形颗粒)的平均粒径为35 nm,Pd壳的平均厚度为9 nm.该反相微乳液法简单易行,对于制备其他核-壳纳米粒子具有借鉴意义.  相似文献   

17.
采用种子层辅助水热生长法制备了ZnO纳米棒有序阵列.将ZnO溶胶旋涂到玻片上,通过煅烧得到晶种,然后将载有晶种的玻片放入含有硝酸锌和六亚甲基四胺的反应釜里,经过水热反应得到垂直于玻片生长的ZnO纳米棒有序阵列.利用原子力显微镜(AFM)观测样品表面形貌并定量分析ZnO纳米棒的长度、直径和生长密度.结果表明,当旋涂转速为4 000r/min,旋涂次数为3次时所得到的ZnO晶种分布均匀,排列紧密,平均粒径为24.3nm.当反应物浓度为0.025mol/L,反应时间为3h,反应温度为90℃时,制备的ZnO纳米棒呈有序阵列,其中纳米棒的长度为164.4nm,直径为104.1nm,生长密度为64.7根/μm2.  相似文献   

18.
MoS_2与其他半导体的异质结一般采用二次生长法,该方法比较费时,而且容易产生聚集,针对该问题,本文采用高压釜水热法一次制备出了MoS_2/SnO2与MoS_2/SnS_2的复合物,利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)和紫外-可见-近红外分光光度计(UV-vis-NIR)对样品进行了表征.实验结果显示,复合结构中,MoS_2为二维少层结构,制备过程中的NH_4~+对MoS_2二维结构的成形有促进作用;通过调整钼源与锡源的比例,发现将SnCl_4与(NH_4)_6Mo_7O_(24)中金属离子摩尔比调整为9∶1时,可以稳定得到MoS_2/SnS_2的二维材料.通过分析其生长机理可知,金属盐水解引起的溶液酸碱性变化及相互影响,对复合结构的成型起主要作用.  相似文献   

19.
用热蒸发法于700℃在硅衬底上制备了纳米线、多针状、四脚针状结构的ZnO,研究了衬底与热源间的距离对ZnO形貌的影响.用扫描电镜(SEM)表征了ZnO的形貌,当衬底距热源20mm时,ZnO呈现四脚针状且具有很细的尖端,直径为50nm.X射线衍射(XRD),微区Raman图谱表明四脚针状ZnO是高纯的六角纤锌矿结构.另外,对ZnO不同形貌的生长机理进行了初步研究.  相似文献   

20.
用高纯度的Ag靶,采用直流溅射法在石英衬底上通过退火处理,得到Ag纳米颗粒薄膜;然后通过射频溅射法在Ag纳米颗粒上沉积不同厚度的SiO2隔离层,再通过直流反应溅射在SiO2隔离层上沉积TiO2薄膜(膜厚60nm),得到TiO2-SiO2-Ag复合薄膜.对样品进行了紫外-可见吸收光谱、拉曼散射光谱、扫描电子显微镜及光催化性能研究.研究结果表明,TiO2-SiO2-Ag复合薄膜结构由于Ag纳米颗粒的局域表面等离激元效应,而与入射光场耦合,使TiO2对紫外光的吸收增强,从而增加了电子-空穴对的产生率,表现出较TiO2更强的光催化性能;通过调节SiO2的厚度可以调控Ag纳米颗粒的局域表面等离激元与TiO2的相互作用,从而提高TiO2的光催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号