首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
XRD,TEM,N2-吸附等表征手段表明,在700℃下以碳热氢还原方法制备的粒径在1~4nm的β-Mo2C,能够均匀分散在活性炭载体上.在温和条件(100℃,氢压1.0MPa,3h)下,以水作为反应溶剂,质量分数为20.0%的Mo2C/AC催化剂催化香兰素的加氢脱氧反应转化率高达93.2%,2-甲氧基-4-甲基苯酚的选择性达到53.8%.随着负载量的增加,Mo2C/AC催化剂的比表面积呈下降趋势,其活性先增强后减弱,而当负载量增加到一定程度后,Mo2C粒子在载体上发生团聚,导致催化活性大幅度降低.根据原料和产物浓度随时间的变化曲线,提出加氢脱氧反应以香兰醇作为中间产物,经过2步加氢步骤生成2-甲氧基4-甲基苯酚,且第1步加氢反应速率大于第2步.使用多次后,Mo2C/AC催化剂的催化活性几乎不变,说明其具有工业应用前景.  相似文献   

2.
分别采用共沉淀法和溶胶凝胶法制备了具有高水热稳定性的Ce_(0.5)M_(0.5)O_2(M=Zr,Ti)载体,并通过浸渍法制得高分散Pt/Ce_(0.5)M_(0.5)O_2(M=Zr,Ti)催化剂,分析了短链脂肪醇作为氢供体用于香兰素加氢脱氧反应的催化性能.实验结果表明,复合氧化物催化剂Pt/Ce_(0.5)M_(0.5)O_2(M=Zr,Ti)具有高的水热稳定性和优良的加氢脱氧活性,且Pt/Ce_(0.5)Zr_(0.5)O_2较Pt/Ce_(0.5)Ti_(0.5)O_2的催化性能更胜一筹,催化剂的加氢脱氧性能与其表面的酸性质以及贵金属Pt在载体上的高度分散有关.短链脂肪醇作为含氢的有机小分子,可作为氢源替代氢气,是理想有效的氢供体.  相似文献   

3.
将多壁碳纳米管负载的碳化钼催化剂用于玉米油的加氢脱氧反应以制备柴油类烃,结果表明,该类催化剂对玉米油加氢脱氧反应具有极高的转化率和选择性.结合XRD、Raman、TEM、IR、TG等催化剂表征技术,考察了载体多壁碳纳米管的预处理条件、管径、表面缺陷浓度等因素对催化剂活性和玉米油加氢脱氧反应的影响.在氢压2.5 MPa、反应温度260℃、搅拌速率500r·min-1的实验条件下反应3h后,玉米油在Mo2C/MWCNT上加氢脱氧制备柴油类烃的反应转化率接近90%,烃类选择性达到了98%.  相似文献   

4.
介绍了一种用于羰基胺化的合成方法.该方法以酮为底物,HCOONH4为氢源和氮源,Pd/C为催化剂,CH3OH与H2O为溶剂,对羰基进行还原胺化制得相应的胺.甲酸铵作为氢供体,具有廉价、易得、还原性能好等优点,Pd/C催化加氢可使反应在温和的条件下进行.该方法反应速度快、后处理方便、选择性好.最佳反应条件:常温常压、CH3OH∶H2O(V∶V)=9∶1、HCOONH4∶原料∶Pd/C(M∶M∶M)=100∶10∶1.实验过程中,分别对2-金刚烷酮;5-氨基羟基-2-金刚烷酮;3-奎宁酮进行了胺化反应研究,获得较好的结果,产物均经1H-NMR、GC-MS或MS确证结构.  相似文献   

5.
以不同加氢组分对CO2加氢合成二甲醚性能的影响为对象,采用XRD、BET、TEM、TPR和TPD对催化剂性质进行了表征.研究结果表明,Cu/HZSM-5催化剂中添加Zn或Mn均能有效提高催化剂的CO2加氢转化活性;同时添加Zn和Mn的Cu-Zn-Mn/HZSM-5催化剂,CO2加氢合成二甲醚性能最好,CO2转化率18.78%,DME选择性46.22%.其中,Mn存在有利于催化剂加氢活性组分的分散,并增加对CO2的吸附能力;Zn的存在则增强了催化剂对H2的吸附活化能力,Zn和Mn同时存在产生的协同作用使催化剂具有很好的CO2加氢合成二甲醚的活性.  相似文献   

6.
以SiO2、Al2O3和HZSM-5、Re-HY分子筛为载体,以Zn为主要活性成分,研究了不同类型载体以及不同Si/Al比的HZSM-5分子筛负载Zn催化剂的愈创木酚加氢脱氧(HDO)反应性能。结果表明,催化剂的酸性是影响其加氢脱氧活性和产物选择性的主要因素,并且愈创木酚加氢脱氧转化为环己烷、BTX(苯、甲苯、二甲苯)等完全脱氧产物的活性,与催化剂的总酸量、酸中心强度具有一定的相关性。  相似文献   

7.
以SiO2、Al2O3和HZSM-5、Re-HY分子筛为载体,以Zn为主要活性成分,研究了不同类型载体以及不同Si/Al比的HZSM-5分子筛负载Zn催化剂的愈创木酚加氢脱氧(HDO)反应性能。结果表明,催化剂的酸性是影响其加氢脱氧活性和产物选择性的主要因素,并且愈创木酚加氢脱氧转化为环己烷、BTX(苯、甲苯、二甲苯)等完全脱氧产物的活性,与催化剂的总酸量、酸中心强度具有一定的相关性。  相似文献   

8.
采用水热法一锅合成了一系列四方相ZrO2负载Ni的加氢催化剂,以苯加氢生成环己烷为探针反应,对比研究了其同其它方法合成的Ni/ZrO2催化剂的催化加氢性能。通过XRD、H2-TPR、H2-TPD、TEM及N2物理吸附等表征及催化评估显示,相较于浸渍法得到的Ni/ZrO2催化剂,水热法一锅合成的Ni/ZrO2催化剂具有比表面积更大、纳米颗粒更小,Ni分布更均匀等特点,催化效果更佳。其中15%的Ni负载量为最佳负载量,表现出最佳的催化活性,在120℃左右即可转化率达到100%。  相似文献   

9.
研究制备了Ni-Cu/SiO2双功能催化剂,并在离子液体和有机溶剂介质中研究柠檬醛催化加氢合成薄荷醇反应.结果表明:离子液体中催化剂对柠檬醛分子中的2位C=C双键加氢更容易,提高了催化剂选择性,反应条件更为温和;特别是可调节酸度的[bmim][AlmCln]离子液体,在竞争性加氢中促进了柠檬醛向生成薄荷醇的方向转化;在2MPa,80℃的反应条件下,柠檬醛转化率为100%,对薄荷醇的选择性为88.6%.而且,催化剂和离子液体可回收和重复使用.  相似文献   

10.
以稳定态晶型α-Al2O3为载体,采用浸渍法制备了低负载量蛋壳型 Pt/α-Al2O3催化剂,使用涓流床反应器,将该催化剂应用于6-氯-3-硝基甲苯-4-磺酸液相催化加氢合成 CLT 酸的反应,考察了Pt的负载量、催化剂的还原方式、催化剂的焙烧温度等对6-氯-3-硝基甲苯-4-磺酸液相催化加氢合成 CLT 酸的影响.实验结果表明: Pt 负载量的质量分数为0.15%,催化剂焙烧温度为400℃,氢气还原300℃×2 h时,6-氯-3-硝基甲苯-4-磺酸的转化率高达97%,并且有效抑制了脱氯反应的发生.此外, XRD、TEM和EDS表征结果表明:活性组分Pt以纳米颗粒形式存在,尺寸极小且在α-Al2O3载体上高度分散,这有利于6-氯-3-硝基甲苯-4-磺酸液相催化加氢合成CLT酸.  相似文献   

11.
负载型磷钨酸对柴油催化氧化脱硫   总被引:4,自引:0,他引:4  
采用过量浸渍法和吸附法把磷钨酸(PW12)负载在TiO2、改性Y分子筛(GY)、AC载体上,并用负载后的催化剂对柴油(含硫量540 mg.L-1)进行催化氧化脱硫,结果表明,3种催化活性强弱顺序为:GY>TiO2>AC,且当GY上负载PW12的质量分数为30%的PW12/GY催化脱硫效果最好。对催化剂进行了酸强度测  相似文献   

12.
生物油轻质组分中水的质量分数高达85%,除水困难,弃之浪费又造成污染. 采用水相重整的方法可充分利用这部分物质,得到宝贵的氢气资源. 实验室以Pt/Al2O3为催化剂,可得到757 mL的气体,并且氢气的体积分数高达65.86%. 由于Pt为贵金属催化剂,研究其在反应过程中的稳定性非常必要. 为此,对反应后的催化剂进行了XRD、TEM、SEM和TPO表征,发现其性质发生了较大的改变. 将催化剂煅烧处理后进行重复试验,发现其催化活性和对氢气的选择性均明显下降,即Pt/Al2O3在生物油轻质组分水相重整制氢反应体系中的稳定性较差,难以重复利用.  相似文献   

13.
采用聚乙烯吡咯烷酮(PVP)保护乙醇还原法制备了不同Pd含量的Au-Pd/CeO2催化剂,考察了Pd及其含量对Au/CeO2催化剂甲醇部分氧化制氢反应性能的影响,并运用XRD、TPR、CH3OH-TPD和H2-TPD等技术对催化剂进行了表征。结果表明,Pd的加入提高了Au/CeO2催化剂的活性和氢气选择性,当Au/Pd  相似文献   

14.
采用浸渍法制备Fe-Cu/活性炭非均相催化剂,利用EDS、XPS、BET等测试方法对催化剂进行表征.结果表明,催化剂表面Fe和Cu主要以Fe2O3和CuO形式分布在活性炭的微孔内.Fe-Cu/活性炭非均相催化剂用催化湿式过氧化氢氧化法(CWPO)对印染废水进行深度处理时,CWPO工艺处理出水CODCr去除效率比普通AC/H2O2工艺高,去除率可从普通工艺的17.03%提高到34.84%,出水水质基本达到《污水综合排放标准》(GB18978-2002)一级B标准.得到的最佳处理工艺条件为:双氧水质量分数0.075%,水力停留时间(HRT)2 h,反应塔每周冲洗1次,每次冲洗3 h.  相似文献   

15.
应用浸渍法制备了一系列钌基催化剂,以水煤气变换为探针反应,并采用TPR、XRD、TEM和活性比表面测定等手段研究了过渡金属对Ru/Al2O3催化剂的改性机制。结果表明,过渡金属(特别是Mo)的加入提高了Ru/Al2O3催化剂的活性和耐热性能,降低了钌基催化剂的还原温度,增大了Ru/Al2O3催化  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号