首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been established by XRD, DTA and TG methods that phases of solid solution type of MoO3 in SbVO5 are formed in the system V2O5-MoO3-a-Sb2O4. The Mo6+ ions are incorporated into the crystal lattice of SbVO5 instead of both Sb5+ and V5+, while the charge compensation occurs by a formation of cation defects (□) at Sb5+ and V5+. The phases Sb1-6x xV1-6x xMo10xO5 are stable in the solid-state up to 690±10°C and the limit of solubility of MoO3 in SbVO5 does not exceed 20.00 mol%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
MnV2O6 + δ5 (0.5 < δ < 1) amorphous oxides reversibly insert large amounts of Li (e.g. Li12MnV2O6.96) at low voltage (≈ 1 V). During the first Li insertion, Mn4+ is first reduced to Mn2+ and V5+ is reduced to V3+. Upon further cycling, the V oxidation state varies reversibly between +3 and +5, whereas the average Mn oxidation state varies reversibly between +2 and ~+2.6. Reversible lithium deintercalation of LiCryMn2 − yO4 (0 < y < 1) occurs in two steps at ≈ 4.9 V and 4 V. The cyclability is excellent for y≤ 0.5. It becomes very poor for y ≥ 0.75 due to a migration of transition metal cations from 16d to 8a and I6c sites, where they accumulate upon cycling.  相似文献   

3.
Mixed iron and molybdenum oxide catalysts supported on nanostructured silica, SBA-15, were synthesized with various Mo/Fe atomic ratios ranging from 0.07/1.0 to 0.57/1.0. Structural characterization of as-prepared MoxOy_FexOy/SBA-15 samples was performed by nitrogen physisorption, X-ray diffraction, and DR-UV-Vis spectroscopy. Adding molybdenum resulted in a pronounced dispersion effect on supported iron oxidic species. Increasing atomic ratio up to 0.21Mo/1.0Fe was accompanied by decreasing species sizes. Strong interactions between iron and molybdenum during the synthesis resulted in the formation of Fe−O−Mo structure units, possibly Fe2(MoO4)3-like species. Reducibility of MoxOy_FexOy/SBA-15 catalysts was investigated by temperature-programmed reduction experiments with hydrogen as reducing agent. The lower reducibility obtained when adding molybdenum was ascribed to both dispersion and electronic effect of molybdenum. Catalytic performance of MoxOy_FexOy/SBA-15 samples was studied in selective gas-phase oxidation of propene with O2 as oxidant. Adding molybdenum resulted in an increased acrolein selectivity and a decreased selectivity towards total oxidation products.  相似文献   

4.
Combining the ion cyclotron resonance method and a Knudsen effusion source, we obtained a series of MoxOy + (x = 1 – 5, y = 1 – 15) molybdenum oxide cluster ions. We studied the dependence of the concentrations of these ions on the trapping time and their reactions with carbon monoxide. It is shown that MoxOy + ions with x > 3 contain a cyclic Mo3O9 fragment in their structure. The oxygen bond energies in MoxOy + ionic clusters are estimated.  相似文献   

5.
Reactions of oxygen-containing molybdenum clusters MoxOy (x = 1–3, y = 1–9) with iron carbonyl ions Fe(CO) n + (n = 1–3) were studied by the ion cyclotron resonance technique. The reactions were found to yield mixed Fe-Mo oxo clusters MoxOyFe+ (x = 2, 3; y = 5, 6, 8, 9).  相似文献   

6.
Porous S-doped bismuth vanadate with an olive-like morphology and its supported cobalt oxide (y wt% CoOx/BiVO4−δS0.08, y = 0.1, 0.8, and 1.6) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt% CoOx/BiVO4−δS0.08 photocatalysts were single-phase with a monoclinic scheetlite structure, a porous olive-like morphology, a surface area of 8.8–9.2 m2/g, and a bandgap energy of 2.38–2.41 eV. There was the co-presence of surface Bi5+, Bi3+, V5+, V3+, Co3+, and Co2+ species in y wt% CoOx/BiVO4−δS0.08. The 0.8 wt% CoOx/BiVO4−δS0.08 sample performed the best for methylene blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and CoOx co-doping, higher oxygen adspecies concentration, and lower bandgap energy were responsible for the excellent visible-light-driven catalytic activity of 0.8 wt% CoOx/BiVO4−δS0.08.  相似文献   

7.
The reactions of Mo+ ions and Mo x O y + oxygen-containing molybdenum cluster ions (x = 1-3; y = 1-9) with methane, ethylene oxide, and cyclopropane were studied using ion cyclotron resonance. The formation of a number of organometallic ions, including the metallocarbene MoCH2 + , as well as molybdenum oxometallocarbenes Mo x O y CH2 + (x = 1-3; y = 2, 4, 5, or 8) and Mo x O y (CH4)+ ions (x = 1-3; y = 2, 5, or 8), was detected. The upper and lower limits of bond energies in oxometallocarbene complexes were evaluated: 111 > D 0 (Mo x O y +-CH2) > 82 kcal/mol (x = 1-3; y = 2, 5, 8).  相似文献   

8.
《Solid State Sciences》2004,6(7):689-696
Two interesting neutral tetrasupporting heteropolyoxometalates: [MoVI7MoVVIV8O40(PO4)][M(phen)2(OH)]2[M(phen)2(OEt)]2·xH2O (phen=1,10-phenanthroline, EtOH=ethanol, M=Co, x=7, 1; M=Ni, x=6, 2) were hydrothermally prepared and structurally characterized. The mixed molybdenum–vanadium polyoxoanion [MoVI7MoVVIV8O40(PO4)]4− exist in both two complexes, which acts as a bridge to covalently link two pairs of transition metal complex fragments, generating neutral windmill-like trimetallic nanocluster polyoxometalates. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 reveal that antiferromagnetic exchange interaction exists in this type of trimetallic tetrasupporting heteropolyoxometalates.  相似文献   

9.
A set of oxygen-containing molybdenum oxide clusters Mo x O y (x = 1–3; y = 1–9) was obtained with the use of a combination of a Knudsen cell and an ion trap cell. The reactions of positively charged clusters with C1–C4 alcohols were studied using ion cyclotron resonance. The formation of a number of organometallic ions, the products of initial insertion of molybdenum oxide ions into the C–O and C–H bonds of alcohols, and polycondensation products of methanol and ethanol were found. The reactions of neutral molybdenum oxide clusters Mo x O y (x = 1–3; y = 1–9) with protonated C1–C4 alcohols and an ammonium ion were studied. The following limits of proton affinity (PA) were found for neutral oxygen-containing molybdenum clusters: (MoO) < 180, (Mo2O4, Mo2O5, and Mo3O8) = 188 ± 8, PA(MoO2) = 202 ± 5, PA(MoO3, Mo2O6, and Mo3O9) > 207 kcal/mol.  相似文献   

10.
11.
Hydrothermal reactions of V2O5, tetra-2-pyridylpyrazine (tpyprz) and an appropriate M(II) starting material yield a series of oxides of general composition [{Mx(tpyprz)}yV4O12] [x=1, y=2, M=Co(II), Ni(II); x=2, y=2, M=Cu(I); x=2, y=1, M=Zn(II)]. The Co(II) and Ni(II) analogues (1 and 2) are isostructural and consist of one-dimensional ribbons constructed from {V4O12}4− clusters linked through {M(tpyprz)}24+ binuclear units of edge sharing {MO3N3} octahedra. In contrast, the structure of [{Cu2(tpyprz)}2V4O12] (3) is two-dimensional and constructed of {Cu2(tpyprz)}n2n+ chains linked in the second dimension through the {V4O12}4− clusters. The structure of [{Zn2(tpyprz)V4O12] (4) is also two-dimensional but may be described as {Zn2V4O12} chains interconnected through the binucleating tpyprz ligands. The roles of the coordination preferences of the secondary metal cations as well as the nature of the organic components are discussed.  相似文献   

12.
We report adjustment on the self-assembly between polymer of polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA) and inorganic molybdenum oxide layers from the micrometer scale to the nanometer scale. Our method is to break the strong interactions between the organic polymers by introducing suitable bridging agents and adjust the reaction speeds of the two competitive reactions in the reaction system. We use I2 to complex with PVA and break the strong hydrogen interactions between the PVA chains, resulting in a PVA-I2/(MoxOy)n− complex, in which the organic and inorganic species self-assemble homogenously on the molecular scale. We also adjust the thickness of the inorganic (MoxOy)n− layers in the hybrid of PVP/(MoxOy)n− by controlling the reaction speeds of the two competitive reactions: hydrolysis of Mo7O24 6− into (MoxOy)n− and packing into thick inorganic layers on the one hand, and hybridization of (MoxOy)n− and PVP into layered hybrid on the other hand. Experimental results proved that when the hydrolysis is overwhelming, the inorganic molybdenum oxide chains pack into heavy layers and self-assemble with PVP polymers on the micrometer scale, and when the hybrid reaction dominates, the organic polymer and molybdenum oxide hybridize on the molecular scale. These findings open new routes to disperse organic polymer and inorganic species homogenously and fabricate novel organic/inorganic hybrid nanomaterials in situ.  相似文献   

13.
The solid solutions of chlorapatite compounds Ba5Mn3−xVxO12Cl (x = 0–3.0) and Ba5Mn3−xPxO12Cl (x = 0–3.0) have been synthesized through solid state reactions and Pechini or sol–gel method using citric acid. The colors of the samples change from white (x = 3.0) through turquoise (x = 1.5) to dark green (x = 0) with increasing amount of manganese. Optical measurements reveal that the origin of the color is presumably a combination of d–d transitions of Mn5+ and cation-anion charge transfer from transition metals to oxygens. Near IR reflectance measurements indicate that synthesized compounds are promising materials for “cool pigments” applications. Magnetic measurements verify that manganese has two unpaired electrons and exhibits 5 + oxidation state. The IR spectra change systematically with sample compositions and the fingerprint region (700 cm−1 to 1100 cm−1) indicates characteristic bands belonging to (MnO4)3−, (VO4)3− and (PO4)3− functional groups. Structure refinements using neutron data confirm that Mn5+, V5+ and P5+ cations occupy the tetrahedral sites in the apatite structure.  相似文献   

14.
Complex vanadium and titanium oxides modified by copper ions are studied by the electrochemical and ESR methods. Oxides Cu x V2?y Ti y O5?δ·nH2O (0<y<1.33) have a layered structure and oxides Cu x Ti1?y V y O5+δ·nH2O (0<y<0.25), an anatase structure. The intercalation of cations Cu2+ into the hydrates leads to oxidation of V4+. According to ESR data, V4+ exists in the oxides in the form of VO2+ and an octahedral surround of oxygen (V4+?O6), respectively. The electroreduction of ions of d-elements and chemisorbed oxygen in the oxides is analyzed. The intercalation of cations Cu2+ alters the content of V4+ and the chemisorption ability of the oxides. Possible reasons for this phenomenon are discussed.  相似文献   

15.
On Hexagonal Perovskites with Cationic Vacancies. XXXIII. Compounds of Type Ba6?xSrxB2?y3+SEy3+W3□O18 In the series Ba6?xSrxLu2?ySEy3+W3□O18 a substitution of Sr2+ for Ba2+ is possible. According to intensity calculations on powder data of BaSr5Lu1,6Ho0,4W3□O18 the compounds crystallize in a rhombohedral 18 L type with the sequence (hhcccc)3; space group R3 m. The refined, intensity related R' value is 11.5%. The differences in properties (diffuse reflectance spectra, photoluminescence) between the hexagonal modifications Ba6B2?y3+SEy3+W3□O18 (B3+ ? Gd, Y, Lu; SE3+ ? Sm, Eu, Tb, Dy, Ho, Er, Tm) and the corresponding cubic HT modifications are discussed.  相似文献   

16.
The phase and chemical composition of precipitates formed in Mg(VO3)2-VOSO4-H2O system at initial pH from 1 to 7 and temperature from 80 to 90°C was studied. Polyvanadates of variable composition Mg x V y 4+V12-y 5+1O31–δ · nH2O (0.7 ≤ x ≤ 1.3, 1.2 ≤ y ≤ 2.4, 0.7 ≤ δ = 1.4) were formed at pH from 1 to 4 and V4+/V5+ ratio from 0.43 to 9. Compounds with the general formula Mg x V y 4+V6-y 5+O16-δ · nH2O (0.7 ≤ x ≤ 0.65, y = 1.0, 0.8 ≤ δ ≤ 0.85) were formed at pH from 6.0 to 7.0 and V4+/V5+ ratios from 0.11 to 0.25. The maximum V4+ concentration (y = 2.4) in the precipitates was achieved at the VV4+/V5+ solution ratio of 1.0 and pH = 3. The precipitates in solutions with pH 3 were formed only upon addition of VO2+ ions with the maximum rate at a V4+/V5+ ratio of 0.33. These processes were limited by second-order reactions on the surface of polyvanadates.  相似文献   

17.
Polycrystalline samples of rare-earths molybdates and tungstates, i.e., CdRE4Mo3O16 (RE = Eu, Gd, Y, Ho) and Pb1–3xxEu2xWO4 (0 < x ≤ 0.1296 and □ denotes cationic vacancies) have been successfully prepared by high-temperature annealing of adequate CdMoO4/RE2MoO6 and PbWO4/Eu2(WO4)3 mixtures, respectively. According to the X-ray diffraction analysis, the CdRE4Mo3O16 compounds crystallize in a cubic, fluorite-related-type structure with space group \(Pn\bar{3}n\). In turn, new Pb1–3xxEu2xWO4 phases crystallize in the scheelite-type, tetragonal symmetry, space group I41/a. Cadmium and rare-earth molybdates decompose in the solid state and the solid products of their decomposition are two RE molybdates, i.e., RE2MoO6 and RE2(MoO4)3. Thermal stability of CdRE4Mo3O16 decreases with decreasing of RE3+ radius. The melting point of each sample of Pb1–3xxEu2xWO4 solid solution is lower than melting point of pure matrix, i.e., PbWO4 (1116 °C), and it decreases with increasing in Eu content. Both CdRE4Mo3O16 as well as Pb1–3xxEu2xWO4 samples are insulators, and their optical band gap (E g) is bigger than 3 eV.  相似文献   

18.
A white light-emitting CaW1?x Mo x O4:Tm3+, Tb3+, Eu3+ phosphor was prepared by a Pechini sol?Cgel method. The incorporation of Mo6+ into the CaWO4 host matrix can broaden its excitation range and promote tunability to its emission. When the CaW1?x Mo x O4 system is triply-doped with Tm3+, Tb3+, and Eu3+ ions, energy transfer occurs from both WO4 2? and MoO4 2? groups to Tm3+ and Tb3+ ions. A significant red-shift in the excitation of Eu3+ allows the resulting emission to be tunable between cool, natural, and warm white light by varying the excitation wavelength. The undoped and triply-doped CaW1?x Mo x O4 phosphors were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence excitation and emission spectra, and CIE chromaticity (x, y) coordinates.  相似文献   

19.
Interstitial molybdenum-tungsten, vanadium-tungsten and vanadium-molybdenum-tungsten oxynitrides in the solid solution series Mo1−zWz(OxNy) and V1−zWz(OxNy) (z=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1), and V1−uzMouWz(OxNy) (u, z=0.2, 0.33, 0.4, 0.6; u+z<1), have been obtained by ammonolysis of precursors resulting from the freeze-drying of aqueous solutions of the metal salts (NH4VO3, (NH4)6Mo7O24·4H2O and (NH4)6W12O39·18H2O). A study of the influence of the preparative variables on the outcomes of this procedure is presented. Compounds in the Mo1−zWz(OxNy) series are prepared as single phases by ammonolysis of the respective freeze-dried precursors (during 2 h) at different temperatures between 973 and 1023 K, optimised for each composition, followed by slow cooling of the samples (except for the Mo-only containing phase, in which fast cooling has been used). Compounds in the V1−zWz(OxNy) and V1−uzMouWz(OxNy) series are prepared as single phases by ammonolysis (during 2 h) of crystalline precursors (as resulting from thermal treatment in air at 873 K, during 12 h, of the freeze-dried precursors) at 1073 K, followed by slow cooling of the samples. All the compounds in these series have the rock-salt crystal structure, in which the metal atoms are in an fcc arrangement, with non-metal atoms occupying octahedral interstitial positions. The materials have been characterized by X-ray powder diffraction, elemental analysis, scanning electron microscopy and magnetic measurements.  相似文献   

20.
The effect of VO2+ ions on the composition and kinetics of calcium polyvanadate precipitation from solutions with 1.5 ≤ pH ≤ 9 at 80–90°C has been studied. For 1,5 ≤ pH < 3 and V4+/V5+ = 0.11–9, the precipitated compounds have the general formula Ca x V y 4+ V 12?y 5+ O31?δ · nH2O (0.8 ≤ x ≤ 1.06, 2 ≤ y ≤ 3, 0.94 ≤ δ ≤ 1.5). The maximum vanadium(IV) proportion (y = 3) in the precipitates is achieved when V4+/V5+ = 0.5?1.0 in the solution and pH is 3. Polyvanadate precipitation at pH 1.7 has a long induction period (up to 30 min), which is not observed for V4+/V5+ > 0.1. Precipitation in solutions with pH 3 occurs only when VO2+ ions are added, with a maximum rate near V4+/V5+ = 0.2 and in presence of chloride ions. The processes are controlled by a secondorder reaction on the polyvanadate surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号