首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
To better understand the effect of rectorite and carbon black (CB) on the aging performance of styrene-butadiene rubber (SBR), SBR/CB, SBR/CB/rectorite and SBR/rectorite nanocomposites with the same total filler loading were prepared. The microstructure of the three SBR nanocomposites was characterized by XRD, TEM and SEM. After thermal aging, oxygen-containing molecules were found to be formed in the SBR nanocomposites, as verified by FTIR analysis. The SBR/rectorite nanocomposite showed the highest aging coefficient and the lowest change rate of tensile strength and stress at 100% strain among the three SBR nanocomposites, indicating that the introduction of nano-dispersed rectorite layers can enhance the thermal aging resistance of the nanocomposites. For the SBR/CB/rectorite nanocomposite, the addition of CB helped to improve the interfacial compatibility between the filler and matrix, resulting in the best crack resistance as the aged SBR/CB/rectorite nanocomposite always demonstrated the least cracks on the surface during either stretching or bending experiments.  相似文献   

2.
75/25 (wt %) NR/BR blend/clay nanocomposites were prepared via a combined latex/melt intercalation method, for the first time. At first, NR latex was mixed with various amounts of the aqueous sodium montmorillomte (Na-MMT) dispersion. Obtained mixtures were co-coagulated by dilute solution of the sulfuric acid, washed several times with the distilled water and dried under vacuum. The NR/ clay compounds were then mixed with given amounts of the BR and vulcanizing ingredients in a 6-inch two-roll mill and then vulcanized at 150°C in a hot press. The nanocomposites have better mechanical properties than the clay-free NR/BR blend vulcanizates. Furthermore, modulus and hardness (Shore A) increased by increase of the clay loading in the range of 0–15 phr while tensile strength and elongation at break increased with increasing the clay content up to 5 phr and then decreased gradually by further increase of the clay loading. It was concluded from results of the XRD and mechanical test that nanocomposites containing less than 10 phr clay may show the fully exfoliated structure. With increasing the clay content to 10 and 15 phr, both non-exfoliated (stacked layers) and exfoliated structures may be observed simultaneously in the nanocomposites. TGA results indicated an improvement in main and end decomposition by increasing the clay loading.  相似文献   

3.
Biodegradable poly(butylene succinate)/nanosized carbon black (PBS/CB) nanocomposites were prepared by melt compounding to investigate the effect of CB on flammability and mechanical properties of PBS. In the nanocomposites, CB displayed some positive effect on improving the flame retardancy of PBS, mainly on the decrease of peak of heat release rate, the increase of limited oxygen index value, and the inhibition of melt dripping. It was contributed to the formation of a good carbon layer during combustion and of a network structure in the PBS matrix. Moreover, a good balance on mechanical performances of PBS/CB nanocomposites was achieved with enhanced stiffness and high toughness, which was ascribed to the compatibilization of PBS‐g‐MA, leading to a good dispersion of nanofillers and strong matrix‐nanoparticle interaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
SBR compounds including the N-isopropyl-N’-phenyl-p-phenylenediamine-modified clay(organoclay) were prepared.Effects of modified clay and antioxidant(IPPD) contents on mechanical and rheological properties of SBR composites were studied.FTIR results confirmed that the clay was chemically modified by IPPD and changed into an organoclay.X-ray diffraction(XRD) results confirmed the increase in interlayer distance of the clay due to the insertion of IPPD.Rheological and cure characteristics of SBR compounds were determined using RPA(Rubber Process Analyzer) and rheometer.Scorch time and cure time of SBR compounds decreased with introduction of the organoclay.Mechanical properties and heat aging resistance of the SBR composites were improved significantly by incorporation of the organoclay.  相似文献   

5.
采用不同分散方法(机械搅拌、高速均质搅拌和球磨分散)制备环氧树脂粘土纳米复合材料,研究了分散方法对不同有机粘土解离结构和纳米复合材料力学性能的影响,并在此基础上探讨了粘土的解离机理.结果表明,普通机械搅拌只能使小粒径粘土或大粒径粘土团聚体的外部片层解离;施加一定的外力(如高速均质搅拌)促进粘土团聚体分散,有利于粘土片层的解离;利用剪切摩擦作用较强的球磨法分散粘土,不同处理剂改性粘土的内外片层都可以充分解离,而有机改性剂中酸性质子的催化作用对粘土片层解离的影响不大,只要粒径足够小,片层解离的驱动力(基体弹性力、反应性等)能够克服其所受阻力(片层引力、层外基体粘性阻力、层内粘性引力等),粘土内外各片层将会同时向外迁移而解离.纳米复合材料的力学性能大大改善,冲击强度和弯曲强度分别提高近50%和8%;  相似文献   

6.
This paper addresses the effects of operating variables on mechanical properties of polyurethane/clay nanocomposites including tensile strength, abrasion resistance, and hardness. The variables were prepolymer type, clay cation, clay content, and prepolymer–clay mixing time. The experiments were carried out based on the design of experiments using Taguchi methods. The nanocomposites were synthesized via in situ polymerization starting from two different types of prepolymers (polyether‐ and polyester‐types of polyol reacted with toluene diisocyanate), and methylene‐bis‐ortho‐chloroanilline (MOCA) as a chain extender/hardener. Montmorillonite with three types of cation (Na+, alkyl ammonium ion, and MOCA) were examined. Among the parameters studied, prepolymer type and clay cation have the most significant effects on mechanical properties. Polyester nanocomposites showed larger improvements in mechanical properties compared to polyether materials due to higher shear forces exerted by polymer matrix on clay aggregates during polymer–clay mixing. The original MMT with Na+ cation results in weak improvements in mechanical properties compared to organoclays. It is observed that the stress and elongation at break, and abrasion resistance of the nanocomposite samples can be optimized with 1.5% of clay loading. The morphology and chemical structure of the optimum sample were examined by X‐ray diffraction and FT‐IR spectroscopy, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Rubber blend/clay nanocomposites based on the 50/50 (wt %) natural rubber/butadiene rubber was prepared by the latex method via mixing the latex of 50/50 NR/BR blend with different amounts of the aqueous sodium montmorillonite (Na-MMT) dispersion and co-coagulating the mixture. XRD and TEM were used to characterize structure of the nanocomposites. It was found that fully exfoliated structure could be obtained by this method only when the low loading of layered silicate (up to 5 phr) is used. With increasing the clay content, both non-exfoliated (stacked layers) and exfoliated structures can be observed simultaneously in the nanocomposites. Nanocomposites showed mechanical properties better than the clay-free volcanizate. Moreover, modulus, tensile strength, elongation at break and tear strength increased significantly by increasing the clay amount up to 5 phr and then remained almost constant by further increasing the clay content. Improvement in the mechanical properties by increasing the clay loading up to 5 phr was attributed to the nano-reinforcement effect of Na-MMT. TGA results indicated an improvement in the main decomposition temperature by increasing the clay amount.  相似文献   

8.
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT‐Si) supported catalyst, was developed. MT‐Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT‐Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay–silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 941–949, 2004  相似文献   

9.
The feasibility of constructing polymer/clay nanocomposites with polypeptides as the matrix material is shown. Cationic poly‐L‐lysine · HBr (PLL) was reinforced by sodium montmorillonite clay. The PLL/clay nanocomposites were made via the solution‐intercalation film‐casting technique. X‐ray diffraction and transmission electron microscopy data indicated that montmorillonite layers intercalated with PLL chains coexist with exfoliated layers over a wide range of relative PLL/clay compositions. Differential scanning calorimetry suggests that the presence of clay suppresses crystal formation in PLL relative to the neat polypeptide and slightly decreases the PLL melting temperature. Despite lower crystallinity, dynamic mechanical analysis revealed a significant increase in the storage modulus of PLL with an increase in clay loading producing storage modulus magnitudes on par with traditional engineering thermoplastics. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2579–2586, 2002  相似文献   

10.
In this work a layer structure from styrene butadiene rubber (SBR) composites and PU foam with improved flame retardancy property and high sound absorption coefficient at frequency range (200–500 Hz). Different types of flame retardants; iron (acrylic-co-acrylamide) as metal chelate (MC), magnesium hydroxide (MOH) and sodium tripolyphosphate (STP) were blended with SBR. The type and loading level of flame retardant had a great effect on filler dispersion and consequently on mechanical properties of SBR. MOH exhibited the best dispersion as indicated from scanning electron microscope (SEM), and SBR/MOH samples had almost the highest crosslink density (16.04*10−5 g−1 mol) and the best mechanical properties where the tensile strength was improved by 32.7% at 40 phr MOH. Horizontal burning rate of SBR composites indicated that MC and MOH reduced the rate of burning of SBR at all loading levels. TGA data presented that the addition of flame retardants to SBR increased the maximum decomposition temperature in all composites. A double and triple layer structures of SBR composite and PU foam was designed. The effect of 2.5 cm air cavity on the sound absorption coefficient of SBR-PU foam layered structure was studied. The presence of air cavity behind the layered structure improved the sound absorption in the range of (200–500 Hz) better than the existence of it between the layers. The triple-layer structure gave higher sound absorption coefficient at lower frequencies than that obtained with the double-layer structure where it reached to ≥0.98 at 315 Hz.  相似文献   

11.
Three nylon-6/unmodified clay/rubber nanocomposites with high toughness, high stiffness, high heat resistance and reduced flammability were studied in this paper, on basis of three compound powders of ultra-fine full-vulcanized powdered rubber (UFPR)/montmorillonite (UFPRM). It was found that all of the three UFPRs used in the study can help the silicate layers without organic treatment to be exfoliated in the nylon-6 matrix, despite some differences in compatibilities between them and nylon-6. Accordingly, the clay in different UFPRMs at the same loading content can lead to a similar improvement in stiffness and heat resistance of nanocomposites. In other words, UFPRs having different compatibilities with nylon-6 do not affect the stiffness and heat resistance of nanocomposites largely. However, the nylon-6 nanocomposites, modified with different UFPRMs, show different superior properties. Butadiene styrene vinyl-pyridine UFPRM (VP-UFPRM) is more effective in improving toughness of nylon-6. Nylon-6/silicone UFPRM (nylon-6/S-UFPRM) nanocomposite exhibits more reduced flammability, good flowability and high thermal stability. As for nylon-6/acrylate UFPRM (nylon-6/A-UFPRM) nanocomposite, it shows high toughness and thermal stability. Furthermore, the mechanism of unmodified clay exfoliation during the melt compounding and the effect of different UFPRs on the properties of the nylon-6/UFPRM nanocomposites are also discussed.  相似文献   

12.
In our work, effects of 2‐mercapto‐1‐methylimidazole modified graphite nanoplatelet (MMI–GN) and carbon black (CB) on static and dynamic mechanical properties of styrene butadiene rubber (SBR) composites were studied. MMI–GN is synthesized by ball‐mill process, and the result reveals that π–π interactions existed between MMI and GN. The results demonstrate that the static and dynamic mechanical performances of SBR/CB/MMI–GN composites are significantly improved over these of SBR/CB and SBR/CB/GN composites. Compared with SBR/CB, the tensile strength, tear strength, and modulus at 300% elongation of SBR/CB/MMI–GN–3 are greatly improved by 45%, 27%, and 4%, respectively. And the rolling resistance of SBR/CB/MMI–GN–3 is reduced by 3.7% with remaining almost unchanged in the wet grip property. The superiority of MMI–GN in the enhancement for the overall performance of SBR/CB composites is attributed to the well dispersion of GN throughout the SBR matrix and the enhanced interfacial interactions between GN and the SBR matrix. This work might expedite synthesis of the graphite‐based materials for enhancing rubber composites, and enlarge the potential applications of modified graphite to fabricate the high‐performance rubber composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A novel method is described for the preparation of nanocomposites comprising a high performance rubber for tire application and layered silicates clay. In this work nanocomposites of solution‐styrene butadiene rubber (S‐SBR) with montmorillonite layered silicate were prepared with carboxylated nitrile rubber (XNBR), a polar rubber, as a compatibilizer. A sufficient amount of organomodified layered silicate was loaded in carboxylated nitrile rubber (XNBR) and this compound was blended as a master batch in the S‐SBR. Mixed intercalated/exfoliated morphologies in the nanocomposite are evinced by X‐ray diffraction measurements and transmission electron microscopy. Dynamic mechanical analysis also supports the compatibility of the composites. A good dispersion of the layered silicate in the S‐SBR matrix was reflected from the physical properties of the nanocomposites, especially in terms of tensile strength and high elongation properties.  相似文献   

14.
Polymer composites have been the mainstay of high-performance structural materials, but these materials are inherently sensitive to environmental factors such as temperature, exposure to liquids, gases, electrical fields and radiation, which significantly affects their useful life. Addition of layered silicate nanofillers in the polymer matrix has led to improvements in the elastic moduli, strength, heat resistance, decreased gas permeability and flammability. In the present work epoxy modified with Cloisite 30 B̈ nanoclay (at 1, 3 and 5 wt% of resin) and E-glass unidirectional fibers are used to prepare fiber reinforced nanocomposites using hand lay-up method. The nanocomposites have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results show that the interlayer spacing between the clay platelets increased significantly indicating that the polymer is able to intercalate between the clay layers. The mechanical properties are measured by carrying out tensile, hardness and flexural tests and values are compared with those found for fiber reinforced neat epoxy composites. The tests show that an addition of nano-clay up to 3 wt% increases tensile strength and micro-hardness and there is a decrease in values with further clay addition up to 5 wt%. The flexural strength increased significantly with clay loading and the highest value is observed for specimens with 5 wt% of clay. Further, durability studies on nanocomposites have been performed in water and NaOH baths under accelerated hygrothermal conditions. During the exposure it is observed that the degradation in NaOH environment is more severe than in water.  相似文献   

15.
以十二烷基季铵盐与累托石 (REC)进行阳离子交换得到有机粘土 (OREC) ,以OREC与热塑性聚氨酯弹性体 (TPUR)采用熔融挤出共混法制备了OREC TPUR纳米复合材料 .用透射电子显微镜 (TEM)表征了复合材料的微相结构 ,测试了复合材料动态热机械性能 (DMA)及热失重 (TG) ,讨论了复合材料的耐热空气老化性能及耐油介质性能等 .结果表明 ,累托石粘土在聚氨酯热塑性弹性体中以纳米尺寸分散 ,纳米复合材料具有较高的动态热机械性能 ,其储能模量最大可提高 7倍多 ,损耗模量最大可提高 4倍多 .复合材料的其他性能均有不同程度的提高 ,特别是OREC添加量为 2 %时 ,复合材料TG、耐油性及耐空气老化性能最高 .其初始分解温度提高 1 5℃ ,在 40 #机油中浸泡 1 68h后拉伸强度保持率达到 86 4% ,1 2 0℃热空气老化箱中老化 72h后拉伸强度保持率达到 87 0 % .  相似文献   

16.
High-impact polystyrene (HIPS)/montmorillonite (MMT) nanocomposites were prepared via in-situ polymerization of styrene in the presence of polybutadiene, using intercalated cationic radical initiator-MMT hybrid. Incomplete exfoliation of the silicate layers in the HIPS nanocomposites was observed when a bulk polymerization was employed. On the other hand, the silicate layers were efficiently exfoliated in the PS matrix during a solution polymerization, due to the low extra-gallery viscosity, which can facilitate the diffusion of styrene monomers into the clay layers. The resulting exfoliated HIPS/MMT nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, particle size analysis, gel permeation chromatography, and dynamic mechanical analysis. The nanocomposites exhibited significant improvement in thermal and mechanical properties. For example, about 50% improvement in Young’s modulus was achieved with 5 wt% of clay, compared to the unmodified polymer counterpart.  相似文献   

17.
Nanosized carbon black (CB) was introduced into polypropylene/carbon nanotubes (PP/CNTs) nanocomposites to investigate the effect of multi‐component nanofillers on the thermal stability and flammability properties of PP. The obtained ternary nanocomposites displayed dramatically improved thermal stability compared with neat PP and PP/CNTs nanocomposites. Moreover, the flame retardancy of resultant nanocomposites was greatly improved with a significant reduction in peak heat release rate and increase of limited oxygen index value, and it was strongly dependent on the content of CB. This enhanced effect was attributed mainly to the formation of good carbon protective layers by CB and CNTs during combustion. Rheological properties further confirmed that CB played an important role on promoting the formation of crosslink network on the base of PP/CNTs system, which were also responsible for the improved thermal stability and flame retardancy of PP. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

19.
Polyethylene and polypropylene nanocomposites were prepared using a novel oligomerically-modified clay that contains three components, styrene, lauryl acrylate and vinylbenzyl chloride. The nanocomposites were prepared by directly melt blending the polymers with the clay and they were characterized by X-ray diffraction and transmission electron microscopy, to understand their morphology, and their thermal stability, flammability and mechanical properties were evaluated using thermogravimetric analysis, cone calorimetry and mechanical testing, respectively. The reduction in peak heat release rate is about 60% at 5% inorganic clay loading and 70% at 8% inorganic clay loading.  相似文献   

20.
ABS-g-MAH (maleic anhydride) with different grafting degree, ABS/OMT (organo montmorillonite) and ABS-g-MAH/OMT nanocomposites were prepared via melt blending. The grafting reaction, phase morphology, clay dispersion, thermal properties, dynamic mechanical properties and flammability properties were investigated. FTIR spectra results indicate that maleic anhydride was successfully grafted onto butadiene chains of the ABS backbone in the molten state using dicumyl peroxide as the initiator and styrene as the comonomer and the relative grafting degree increased with increasing loading of MAH. TEM images show the size of the dispersed rubber domains of ABS-g-MAH increased and the dispersion is more uniform than that of neat ABS resin. XRD and TEM results show that intercalated/exfoliated structure formed in ABS-g-MAH/OMT nanocomposites and the rubber phase intercalated into clay layers distributed in both SAN phase and rubber phase. TGA results reveal the intercalated/exfoliated structure of ABS-g-MAH/OMT nanocomposites has better barrier properties and thermal stability than intercalated ones of ABS/OMT nanocomposites. The Tg of ABS-g-MAH/OMT nanocomposites was also higher than that of neat ABS/OMT nanocomposites. The results of cone measurements show that ABS-g-MAH/OMT nanocomposites exhibit significantly reduced flammability when compared to ABS/OMT nanocomposites even at the same clay content. The chars of ABS-g-MAH/OMT nanocomposites were tighter, denser, more integrated and fewer surface microcracks than ABS/OMT residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号